
2023 IEEE International Conference on Big Data (BigData)

979-8-3503-2445-7/23/$31.00 ©2023 IEEE 5466

BigData Fusion for Trajectory Prediction of
Multi-Sensor Surveillance Information Systems

G. Cascavilla
TU/e - JADS

Den Bosch, (NL)
g.cascavilla@tue.nl

A. Cuzzocrea
University of Calabria

Rende, (IT)
alfredo.cuzzocrea@unical.it

D. De Pascale
TiU - JADS

Den Bosch, (NL)
d.de.pascale@tue.nl

M. Omidbakhsh
Concordia University

Montreal, (CA)
mandana.omidbakhsh@concordia.ca

D. A. Tamburri
TU/e - JADS

Den Bosch, (NL)
d.a.tamburri@tue.nl

Abstract—Video surveillance information systems assist foren-
sics to examine and analyze the evidence from crime scenes to
develop objective findings in the investigation of crime. Often,
the existing surveillance information systems exploit an array
of security cameras and IoT devices monitoring the same crime
scene from different points of view while the crime unfolds over
a range of time. However, none can automatically and selectively
merge big data streams connected to such systems to provide a
holistic, end-to-end safety picture.

This work proposes a trajectory prediction architecture frame-
work within a multi-sensor surveillance system. We developed
a novel position measurement technique using monocular depth
perception networks with multi-camera setup using triangulation.
We tested and compared our technique with a single camera
sensor in our first experiment and as the multi-camera setup
determines the position of our target more accurately, we used
our measurement function in our second experiment. In our
second experiment, we employed the Unscented Kalman Filter
(UKF) for predicting the trajectory of the target, and proved that
UKF has good potential for being used in surveillance systems.
Lastly, we designed a general architecture framework for big
data analysis in multi-sensor surveillance systems consisting the
four layers: the Sensor Layer, the Single Sensor Computation
Layer, the Data Fusion and Interpretation Layer, and the Human
Interaction Layer.

Index Terms—Surveillance Systems, Anomalous Trajectory
Recognition, Multi-sensor Data Fusion, Unscented Kalman Fil-
ters (UKF), Distributed Sensor Networks (DNS).

I. INTRODUCTION

A multi-sensor surveillance system is a system to secure
a specified area utilizing multiple sensors. There are many
different implementations of such systems (i.e., office security,
home security, event security, public space security), but they
usually include one or more camera sensors. Examples where
such systems are implemented, are banks, shopping malls,
public transport stations, festivals, or cities [1]–[6].

Within multi-sensor surveillance systems, trajectory predic-
tion is one of the fundamentals for capabilities like automatic
target monitoring or anomaly detection [7], [8]. However, the
target is needed to be located and its position determined
before a target trajectory can be predicted. Several approaches,
even inherited from related contexts, have largely considered
the problem of supporting approximate query answering over
data streams (e.g., [9], [10]).

Multiple big data fusion techniques have already been
researched to determine a target’s position using one or more

sensors. The triangulation technique is one of the techniques
employed in multi-sensor surveillance systems. The angle
determines the position of the target in 3D space towards the
target from two or more sensors with the condition that the
target is visible from at least two sensors. Placing sensors to
make everything visible from at least two places can be very
challenging [11].

A second technique used to fuse data from multiple sensors
is the Kalman Filter (KF), applied for linear system models,
and the Extended Kalman Filter (EKF), used for non-linear
system models [12]. Although EKF is a popular method, it
heavily relies on local linearity, can only approximate the
function to the accuracy of the first-order derivative, and
in practice proves to be very complex in implementation
[13]–[15]. UKF solves the shortcomings of EKF by using a
technique called Unscented Transformation to capture the true
mean and covariance of the system. It then uses the non-linear
system to reach its prediction [15].

To overcome the triangulation approach limitations, our
work proposes a novel position measurement technique that
uses only one sensor and a method called monocular depth
perception. The monocular depth perception method uses a
neural network to determine depth from a 2D image. Our
proposed technique runs the output of a single (monocular)
camera through a depth perception network, and by using the
artificially added depth and the angle from the camera towards
the target, we calculate the position of the target. To validate
the performance of our technique, we compared our proposed
single-sensor method against a setup using the triangulation
method, forming our first research question (RQ):
RQ1. To what extent does a multi-sensor data fusion approach

using triangulation outperform a single sensor approach
using monocular depth perception in trajectory mapping?

Then, to evaluate the prediction with multi-sensors in a non-
linear system, we propose to use UKF as a data fusion method
for predicting the trajectory of our target, forming our second
research question:
RQ2. To what extent does the UKF outperform the baseline

approach and be able to predict the trajectory, if the
performance of triangulation for trajectory mapping in a
multi-sensor system used as a baseline?

Thus the main contributions of this work are as the fol-

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

D
at

a)
 |

97
9-

8-
35

03
-2

44
5-

7/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

90
44

.2
02

3.
10

38
67

79

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:50:26 UTC from IEEE Xplore. Restrictions apply.

5467

lowing:(1) We defined a generic architecture framework for
surveillance systems including the physical sensors to the
users screen. (2) We showcased that our multi-camera setup is
computationally lighter and more precise in mapping our tar-
get’s trajectory than our single-camera setup. (3) We showed
that the UKF data fusion method can successfully be applied
to predict target’s trajectory. (4) An online available repository
reporting the raw data and a replication package in the study
context for further research and new considerations by the
community available in [16].

II. BACKGROUND AND RELATED WORK

In this section, we review monocular depth perception, data
fusion for non-linear systems methods and target tracking in
two dimensions used in surveillance systems.

A. Monocular depth perception

Monocular depth perception methods are mainly researched
in autonomous driving vehicles [17]–[21]. The main moti-
vation comes from the downside of the alternatives: depth
cameras, stereo cameras, and LiDAR. The main disadvantage
of depth cameras is their viewing range. For the stereo
cameras, instead, it is their calibration [20]. LiDAR (Light
Detection And Ranging) is the most popular alternative.
However, compared to a monocular camera, it is much more
expensive, especially if a high-resolution LiDAR is required
[18]–[20]. The main advantages of monocular cameras are
that they are readily available in every modern car, can see
up to approximately 100 meters, and are much cheaper in
comparison [18]–[20].

A monocular depth perception network can be trained with
supervised or unsupervised learning [21]. The data for super-
vised training consists of 2D images combined with ground
truth depth data, which has to be captured by specialized
equipment. As described in [21], unsupervised training data
consists of two images captured by calibrated binocular cam-
eras and is, therefore, easier to capture [21]. In this work, we
focus on networks that are trained unsupervised as described
by Godard et al. [21]. Capturing data for unsupervised training
does not require special equipment. Instead of a model trained
with images and the ground truth depth data, these networks
are trained on pairs of images (left and right images) that
are captured by a pair of calibrated binocular cameras. The
problem the network tries to solve is the disparity between
the two images. In other words, it tries to find the function
that warps the left image to the right image. In [21], they
trained networks on five different data sets using two differ-
ent encoders, resulting in ten different model networks. An
overview of the models with their data set and encoder can be
found in table I.

In the work of [20], monocular depth perception is used in a
system designed to determine the position of objects. It focuses
on detecting vehicles around a car and the distance between
these vehicles from the car, using monocular cameras in the
car. The detection has been done by determining depth using a
monocular depth perception network and converting the result

TABLE I
MODELS CONSIDERED FOR MONOCULAR DEPTH PERCEPTION IN THE

SINGLE-CAMERA SETUP.

Model name Data Set Encoder

City Scapes Cityscapes Self defined 14 layer encoder

Eigen Eigen Self defined 14 layer encoder

Kitti KITTI Self defined 14 layer encoder

City 2 Eigen Cityscapes with Eigen Split Self defined 14 layer encoder

City 2 Kitti Cityscapes with KITTI split Self defined 14 layer encoder

City Scapes Resnet Cityscapes resnet

Eigen Resnet Eigen resnet

Kitti Resnet KITTI resnet

City 2 Eigen Resnet Cityscapes with Eigen Split resnet

City 2 Kitti Resnet Cityscapes with KITTI split resnet

into a Pseudo-LiDAR Point Cloud. Following this operation,
LiDAR-based algorithms are used with the created point
cloud to achieve the result. Unlike this research, our paper
uses monocular depth perception in a system that focuses on
trajectory prediction and mapping of a human target in 3D
space within the context of a surveillance system.

B. Data Fusion for non-linear systems

The Kalman Filter (KF) is a data fusion algorithm that
analyzes and solves a broad class of estimation problems [22].
The KF framework consists of a system model, a measurement
equation, a predicted state estimate, and an error covariance
matrix. The system model represents how the system behaves.
In the case of KF, this is always a linear (dynamic) system.

Nevertheless, scarcely a target walks in a straight line with
the same speed. They usually stand still, start running, or
perhaps turn around. Hence, their dynamic behavior can not
be solved using an underlying constant velocity linear model,
but it needs to be addressed using non-linear models. Extended
Kalman Filter (EKF) and Unscented Kalman Filter (UKF) are
designed as estimators for non-linear systems [14].

EKF is designed to tackle non-linear problems [14], [23].
It linearizes all the non-linear models and applies the original
KF. However, this process can produce unreliable estimates
if the assumptions of local linearity are severely violated
[13], [14]. Then, the state distribution is approximated by a
Gaussian random variable (GRV) and put analytically through
the linear approximations of the non-linear function. The
linear approximations are calculated by taking the first-order
derivatives of the non-linear function, namely the Jacobian
matrix. Unfortunately, in some systems, it is numerically tricky
to compute the Jacobians [13], [15], and EKF turns out to
be too complex to implement or tune as it can have many
variables [13]–[15].

UKF iis designed to tackle the main shortcomings of EKF
[13]–[15]. The UKF is easier to implement with the assump-
tion of calculating the Jacobians, and the model of the system
and measurements can be treated as black boxes [14]. UKF
specifies the state distribution, represented by a GRV, using an
Unscented Transformation (UT) technique to create a minimal
set of sample points [15]. These points capture the true mean

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:50:26 UTC from IEEE Xplore. Restrictions apply.

5468

and covariance of the GRV completely. When propagated
through the true non-linear system, it accurately captures, for
any nonlinearity, the posterior mean and covariance to the
third-order [15], which is more accurate than the first-order
approximations that EKF produces [14], [15]. UKF is easier
to implement and can more accurately approximate the state
function [14].

Ellis et al. [24] present an object-tracking system using
a network of multiple cameras. It was a proof-of-concept
system using overlapping and non-overlapping CCTV cameras
to detect and track vehicles and pedestrians in 3D.

Black et al. [25] focus on tracking objects within the
same observed scene. The 2D object tracking was done by
background extraction. Object tracking in 3D was done by
using the KF and assuming a constant velocity motion model.
In contrast, UKF is used assuming a nonlinear estimation
problem. The weaknesses they address in their approach are a
performance drop when an object splits into multiple objects
or a possible breakdown when an object changes its trajectory
significantly during occlusion. In the work of [26] the (linear)
KF is used to track objects over multiple cameras. The network
of cameras has non-overlapping views and the focus is not on
tracking an object in 3D but on using the KF to track the object
over multiple (non-overlapping) camera views and the blind
spots between them. The tracked objects in the paper were
only vehicles on the highway and can rely on trajectories that
always follow the road.

C. Target tracking in two dimensions

Before a target’s location in 3D space (the observed scene)
can be calculated, its position in the camera’s view must
be determined. The process of tracking a target from the
viewpoint of a camera is referred to as 2d target tracking.

In surveillance systems, background subtraction is often
used to track objects in a scene [27]. The technique implies
the localization of the pixels’ centroid moving in a scenario’s
foreground. The main downside with background subtraction
methods is that the camera must always be stationary. Other-
wise, the background changes too much, and the foreground
can not be extracted. Therefore, this research uses a single
object tracking algorithm from the popular Open Source
Computer Vision (OpenCV) library to be more future-proof for
moving or panning cameras. These algorithms track an object
based on the features of an object (e.g., color, shape) and
their position in previous frames [28]. The library contains the
following algorithms: Boosting, MIL, MedianFlow, MOSSE,
TLD, KCF, GOTURN, and CSRT.

The OpenCV object tracking algorithms have been com-
pared in [28], [29]. The algorithms have different strengths
(e.g., robustness, speed, accuracy, recovery failure) and should
be chosen under the context and purpose of the 2d tracking.
Nonetheless, the 2D tracking of the target is not the main focus
of this research. Therefore, to determine what algorithm best
suits our context, every algorithm in the OpenCV library is
tested on our data, and our findings show that Channel and
Spatial Reliability Tracker (CSRT) [30] is the best tracker

in terms of robustness and precision. This finding aligns
with research on the OpenCV comparison object tracking
algorithms [28], [29].

In the work of [26] the (linear) Kalman Filter is used to
track objects over multiple cameras. The network of cameras
has non-overlapping views and the focus is not on tracking an
object in 3D but on using the Kalman Filter to track the object
over multiple (non-overlapping) camera views and the blind
spots between them. The tracked objects in the paper were
only vehicles on the highway and can rely on trajectories that
always follow the road.

III. SYSTEM ARCHITECTURE FRAMEWORK DESIGN

This section presents our surveillance system architecture,
explaining all the layers within the architecture. We defined
four layers, each with specific tasks and purposes. However,
each layer can influence the other layers based on its design
choices (e.g., the types of sensors used, the purpose of the
entire system). The architecture can be found in fig. 1. Our
proposed architecture is inspired by the JDL model [31].
Similar to JDL model levels, our architecture defines layers
with their responsibilities and considerations. However, one
of the differences between them is that the JDL model is
designed as a functional model [32], whereas this architecture
is a process model. A process model shows the interaction
between parts of the system (e.g., data from the first layer
goes to the second layer) and can not be executed. Another
difference is that the JDL model focuses entirely on the data
fusion domain, abstracting the sources (e.g., sensors input) and
the interface [32], [33], though our proposed architecture is
focused on surveillance systems with a higher-level abstraction
that takes (amongst others) the specific sensors, the purpose of
the system, and the operators of the system into consideration.

A. Sensor Layer

Starting on the left in the architecture, we have the sensor
layer, referred to as the physical layer. It includes all physical
devices used to gather information. There can be two-to-
many sensors in a multi-sensor surveillance system. There are
many types of sensors (e.g., motion detection, temperature,
cameras, microphones), each of which can be produced by
different companies. The sensors in a system can be either
of the same type or a combination of different types. The
sensor layer produces the data processed in the single sensor
computation layer (e.g., videos from the camera, sound from
a microphone, temperature from a temperature sensor). The
main considerations in this layer are the type and placement
of the sensors used in the system.

B. Single Sensor Computation Layer

All the data collected by the sensors are processed in the
single sensor computation layer. If a system has three cameras
and two microphones, each camera and microphone requires
further processing, depending on the sensor type used and the
system’s objective. For example, data from a microphone can
be processed with a speech recognition algorithm, converting

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:50:26 UTC from IEEE Xplore. Restrictions apply.

5469

Object
DetectionSensor

Sensor
Speech

Recognition

Object
Classification

Speech To Text
Conversation

Target
Tracking

Sensor

Object
Detection

Sensor

Object
Detection

Sensor

Object
Detection

Language
Processing

Data Fusion Data
Interpretation Interface

Fig. 1. Third generation surveillance system architecture.

the data into text. Likewise, the camera sensor data can be
processed in the same system to detect and track an object.
However, in a different system, the microphone data can be
used only to detect noise, and the camera sensor data can
only detect movement. These examples show why choosing
the right sensor and defining the system’s purpose is important,
as it is challenging to monitor a street with only a microphone
and detect noise with only a camera. This layer produces the
data for the data fusion layer. It pre-processes the raw sensor
data into something useful to combine it in the next layer
(e.g., from a video stream to an object’s location, from sound
to text).

C. Data Fusion and Interpretation Layer
In this layer, the pre-processed data from the individual

sensors are combined to create a higher-level understanding
of the scene. The combination of data increases the amount
of insight collected by each sensor. For example, tracking an
object from two individual cameras can be combined to map
the object’s trajectory in 3D space. More advanced models can
be used in this layer, like a model trying to interpret what is
happening (e.g., a man walks to the door, a bag left unattended
for 5 minutes). However, these advanced techniques are not
relevant to this research. Hence, we focus on data fusion for
trajectory mapping.

D. Human Interaction Layer
The right-most layer of the system is the human interaction

layer. It provides operators (e.g., security, police, caretakers)
with an overview of the system’s findings, like the target
trajectory or suspicious behavior detected. It also eases the
decision process because operators may practically act when
an anomaly has been detected.

Although it is irrelevant for this research, this layer is also
important for training the interpretation model(s) used in the
previous layer. These models try to detect events (e.g., a bag
left unattended for 5 minutes) and classify them as anomalies
or normal behaviors. When a situation is falsely interpreted as
an anomaly, the operator should mark it as a false positive.
This information can be taken into account for the purpose of
training the anomaly classifier.

IV. EXPERIMENTAL DESIGN

In this section, the general workflow of the experiments
are introduced and the setup of the experiments run during
our testing phase is explained. A detailed explanation and
implementation of the methods used in each experiment are
discussed in Section V.

A. Experiment 1
This experiment is designed to answer RQ1, our first

research question. We compare the trajectory mapping per-
formance of two methods: triangulation and monocular depth
perception. Both methods are tested on the same scene where
the target walks in a zigzag pattern through the observed area.
The triangulation method calculates the position of the target
in 3D space using the angle towards the target from two
cameras. On the other hand, the monocular depth perception
method uses a single video frame from one camera and tries
to add depth to the frame of the video artificially. Hence,
the monocular depth perception calculates the position of the
target using the angle towards the target and the artificial
depth added by the approach. The angle towards the target
is calculated using the camera’s resolution and field of view
(FOV) combined with the target’s pixel coordinates in the
video frame. The angle calculation and the tracking of the
target are explained in more detail in Section V.

The result for both methods is a list of target positions
plotted in a graph representing the top view of the monitored
scene. These positions are then compared to each other and
to the scene recording to determine their performance on
trajectory mapping.

1) Experiment workflow: The first experiment defines two
workflows one for each method used, in the online Ap-
pendix [34] the architecture in fig. 9. The workflows show
where the data comes from and in what form it flows through
the system. It also shows the methods for calculating the
target’s position in 3D space. The first workflow, namely multi
camera, uses the triangulation approach and two cameras to
determine the target’s position. The second workflow, namely
single camera, uses the monocular depth perception method
and a single camera to localize the target in a 3D space.

The multi camera workflow starts with two cameras on
the left. Each camera records a video and sends it to the
target tracking process. The target tracking extracts the pixel
coordinates of the target and sends them to the triangulation
method. The triangulation, starting from the pixel coordinates,
calculates the angle toward the targets to determine the target
position in 3D space. Lastly, the target’s position is plotted on
a top-view map of the scene.

The single camera workflow starts with only one camera.
First, the camera produces a single video of the scene. Then,
it tracks the target and uses its coordinates to calculate the
angle towards the target. Next, the monocular depth perception
method adds artificial depth to the video frames. As a result,
the approach uses the angle toward the target’s pixel coordi-

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:50:26 UTC from IEEE Xplore. Restrictions apply.

5470

nates and the depth to determine the position in 3D space. In
the last step, the position is plotted on a top-view map of the
scene.

The experiment outputs two top view maps, one produced
by the multi-camera workflow using two cameras and the trian-
gulation method, and the other produced by the single-camera
workflow using the monocular depth perception method and
only a single camera. Finally, we compare these two maps to
each other and the actual behavior of the target in the scene.

B. Experiment 2

The second experiment is designed to answer RQ2, our
second research question. This experiment compares the per-
formance of triangulation and UKF methods on their ability to
predict and map the trajectory of our target. The first method
uses triangulation to calculate the position of the target in 3D
space and the second method uses UKF to predict the target’s
trajectory by using a combination of real measurements and
an estimation of the velocity and direction of the target. Both
these methods use two cameras observing the same scene. The
methods are tested in different scenarios where the target’s
walking pattern differs every time. Section IV-B1 discusses
the experiment’s workflow executed for each video.

1) Experiment workflow: In the online Appendix [34] the
architecture in Figure 10 displays the workflow of experiment
two. It starts with two cameras producing a video of the
same observed scene. The target tracking process extracts the
target’s pixel coordinates for each video.

With the pixel coordinates of the target in each video, the
workflow splits and uses Triangulation or UKF to determine
the trajectory. Triangulation uses pixel coordinates to deter-
mine the angle toward the target from both cameras. The
angles are then used to calculate the target’s position in 3D
space. On the other hand, UKF creates a model that tracks the
target, estimating its velocity and direction. The estimation
of velocity and direction is based upon real measurements,
measured using an exact approach, such as Triangulation. The
velocity and direction are updated at specific intervals when
the model receives new measurements. Finally, based on the
estimated velocity and direction of the target, the position of
the target is predicted.

The experiment ends with a list with the coordinates of the
target in 3D space. For both methods, these coordinates are
plotted in a top-view graph. We compare the outcome of both
trajectories against each other and against the actual behavior
of the target in the video.

V. EXPERIMENTAL SETUP

This section gives a detailed overview of the data obtained
and used in the experiments. The experiment environment,
the workflow and the implemented target tracking, angle
calculating towards the target, monocular depth perception,
triangulation and UKF methods are described.

A. Data

The data used in the experiments is video data manually
created in a controlled environment. Two smartphones, a
Samsung Note 10 plus and a Xiaomi Mi 9t pro, filmed a scene
from different positions. The video resolution is 1080p, and
its framerate is 60fps. The target in the video performs several
patterns, like walking in a straight line, zigzagging, or stopping
in the middle of a walk. The different movement patterns are
chosen to challenge the prediction algorithm. Sudden direction
changes make predicting movement and making a good test
case hard. The videos are cut so the center of the target is
always in frame for both cameras. An overview of the camera
sensors and their settings can be found in table VI available
in the online Appendix [34]. An overview of the videos, the
pattern performed, and the duration can be found in table II.
Each video number in table II has two recordings, one from
camera 1 and one from camera 2, both from different positions.
The first experiment uses only video number 4, while the
second uses all the videos.

TABLE II
OVERVIEW OF VIDEOS USED IN THE EXPERIMENTS.

Video number Walking Pattern Duration (seconds) Resolution Frames per second

1 Straight 5 1080x1920 60

2 Walk-stop-walk 17 1080x1920 60

3 U-turn 10 1080x1920 60

4 Zigzag 9 1080x1920 60

B. Experiment environment

Figure 2 shows the environment setup used for both the
experiments. We see cameras 1 and 2 positioned approxi-
mately 11 meters apart. Both cameras can see each other. The

Fig. 2. Top view depiction of the test setup. The green line indicates the
approximate distance between both cameras. The x-axis, y-axis, and green
lines are in centimeters.

videos are recorded outside in a backyard of approximately
7x12 meters during the day, always around noon. The videos
are, therefore, shot in a bright environment. In addition, we
chose to position the cameras across each other to replicate a
public monitoring scenario, like a station or a festival terrain,

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:50:26 UTC from IEEE Xplore. Restrictions apply.

5471

because two security cameras may overlap, recording partially
the same scene.

C. Target tracking

Both experiments use target tracking. It takes as input a
video shot from any of the cameras. To track the target, we first
select the target by manually drawing a box around the target.
Then, we create a tracker object from the OpenCV Python
library, initializing it with the CSRT tracking algorithm [35].
Then, we play out the video, and for each frame, we take the
centroid coordinates of the box and store them in a CSV file.
We take the centroid of the box as it resembles the center
of the target. Table III presents an example of the resulting
tracking data.

TABLE III
EXAMPLE OF THE RESULTING CSV AFTER TRACKING THE TARGET.

index object id frame number x-coordinate y-coordinate

0 0 0 1883 394
1 0 1 1874 396
2 0 2 1866 397
3 0 3 1857 401
4 0 4 1847 403

D. Calculating the angle toward the target

Triangulation calculates the target position in both experi-
ments based on the angles toward the target from both cam-
eras. This section explains how to calculate the angle based
on the target coordinates. The following equation calculates
the angle of the target from the perspective of the camera:

∠a = arctan(
x-coordinate

d
) (1)

Where ∠a is the angle towards the target, with a degree
range from 0 to the camera’s maximum field of view (fov).
The x-coordinate is the x coordinate of the target obtained
from the tracking operation. The d is the camera’s focus point.

Hence, if the x coordinate of the target is 0, we expect an
angle of 0 degrees; if the x coordinate of the target is 1920,
the camera’s maximum resolution, we expect an angle equal
to the maximum fov of the camera.

E. Monocular depth perception

The first experiment uses the triangulation or monocular
depth perception method to determine the target’s position
and compares their results afterward. The depth perception
experiment uses only camera 1 (camera details in table VI in
the online Appendix [34]) on video number 4 because camera
1 has the widest fov and recorded the clearest video, and
video 4 contains the zigzag pattern, one of the more complex
patterns. As explained in section II-A, there are ten different
networks shown in table I that we use to determine depth,
each trained with different data sets or a different encoder. In
this experiment, we parsed our video through each different
network once and compared the output of each network to
determine which network had the best result in determining

depth. In the results, we compare the best-performing network
with the triangulation method.

Before the analysis, the video must be pre-processed. The
first step is to downscale the video from 60fps to 30fps to limit
the number of frames we need to process. Then, each frame
is converted to a 512x256 resolution due to the input format
of the network. Figure 3 presents two processed frames of the
same video, color-coded and interpretable by humans. Brighter
is an object’s color, and closer is the estimation. Darker is the
color of an object, and further away is the estimation from the
camera. After the pre-processing, we take each video frame
and run it through the most accurate network.

Fig. 3. Two resulting example frames of a video after being processed by
the monocular depth perception network.

To calculate the target’s position in 3D space, we use
the angle towards the target and the estimated depth of the
target. For each frame, we get the target’s estimated depth by
transposing the target’s pixel coordinate from the 1080x1920
(60fps) video to the 512x256 (30fps) video and taking the
depth value of this coordinate. The pixel coordinate brightness
level gives the depth value. The coordinate resembles the
center of the target. This process results in a data frame
containing the angle towards the target and the estimated
depth for each video frame. Plotting a point for each frame
and drawing a line between those points gives the top view
trajectory mapping.

F. Triangulation

Experiment 1 uses Triangulation as a multi-camera method,
while Experiment 2 uses Triangulation as the baseline ap-
proach. First, it calculates the target’s location in 3D space by
combining data from two cameras, taking the x-coordinates
from both cameras and converting them into angles using the
method discussed in section V-D. Next, for each 15 angle,
it calculates the average to compensate for the instability
of the tracking algorithm and the difference between the
approximation and the real position of the cameras, discussed
in section VIII. Finally, knowing the angles, position, and
orientation of the cameras, we draw two virtual lines and cal-
culate their point of intersection using the following equations:

x intersect =
((c1y−c1x∗tan(c1 t))−(c2y−c2x∗tan(c2 t)))

(tan(c1 t)−tan(c2 t))
(2)

y intersect = (x intersect ∗ tan(c1 t)) + (c1y − c1x ∗ tan(c1 t))

(3)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:50:26 UTC from IEEE Xplore. Restrictions apply.

5472

where c1x, c1y and c2x, c2y are the coordinates of the
cameras in the top view, and c1 t and c2 t are the angle
towards the target from both cameras.

The resulting x intersect and y intersect are the target
coordinates in the top view. Iterating for each frame, plotting
the resulting points, and drawing a line between the points
gives us the mapping of the trajectory of the target.

G. Unscented Kalman Filter

In the second experiment, we use UKF to predict the target’s
position. Firstly, we track the location of the target in a top
view coordinate space, getting its x and y coordinates and their
respective velocity, namely ẋ and ẏ, giving us the following
state variable:

x =
[
x ẋ y ẏ

]T
(4)

We set the state variable’s starting condition with the target’s
starting position and velocity to 1. We define the vector u to
keep track of the target direction and the distance moved from
the last point recorded.

u =
[
∆d α

]T
(5)

The u vector aids in predicting the next state more accu-
rately. The state transition function predicts the new position
of the target. Due to the non-linearity system assumption, the
state transition is a function instead of a matrix. To estimate
the new coordinates, we take the current x and y and add,
respectively, ∆x and ∆y, having the following functions:

∆x = cos(Ua
T) ∗ U∆d

T (6)

∆y = sin(Ua
T) ∗ U∆d

T (7)

Our sensors return the position of the target, calculated using
triangulation. Therefore, our measurement function needs to
return our prediction (state variable) in the form of a position
(measurement space). Our state variable has a 4x1 shape, we
return position 0 and 2 (x and y respectively), meaning that
our measurement function looks like H =

[
1 0 1 0

]
.

The state co-variance indicates the trust we have in the mea-
surement. Our initialization for the state co-variance matrix
indicates how much we trust the initial state.

VI. RESULTS OF EXPERIMENTS

In this section, we present the results of our two experi-
ments. In Experiment 1, we compare our results of trajectory
mapping using monocular depth perception (single-camera)
approach against the triangulation (multi-camera)approach us-
ing video number 4 with zigzag pattern as shown in fig. 4 and
fig. 5. Multi-camera setup uses cameras 1 and 2, while the
single camera setup uses only camera 1. The single-camera
setup (4) plots two lines; the blue line is the full trace, based
on all measurement points (30fps), and the red line is a sample
line (6fps) (more realistic, as discussed in Section VII). The
single-camera trajectory mapping results in fig. 4 is achieved

Fig. 4. Single-camera trajectory mapping using monocular depth perception.

using the Citty 2 Kitti resnet model. It is the best-performing
model in terms of positioning compared to the other models,
leading us to choose it for comparison against triangulation.
In the results of the multi-camera trajectory mapping (fig. 5),
we notice a sudden spike. The anomalous behavior of the
spike and its implications have been addressed in section VIII.
Experiment 2 predicts the target’s trajectory using UKF and
compares it to the baseline approach (triangulation). Figure 6
displays the results of the data fusion experiment executed in
video 4, where the target walked in a zigzag pattern. As

Fig. 5. Multi-camera trajectory mapping using triangulation.

we can see, the baseline and UKF are very similar. The blue
hue indicates the uncertainty (co-variance) of the predicted
position. Inspecting such uncertainty, we see that the hue
shrinks on relatively straight paths, and when the direction
changes, the hue grows. As expected, we also see that the
uncertainty is high at the start because the algorithm needs
time to converge. Moreover, we see a big spike around x=75
and y=425. This spike occurs when the target is in line with
the two cameras. At that moment, the angle towards the target
from one camera could overshoot the angle towards the target
from the other camera resulting in a wrong measurement.
We discuss the impact on the validity of this issue in VIII.
However, we can see that when we reach this spike, the
uncertainty also spikes.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:50:26 UTC from IEEE Xplore. Restrictions apply.

5473

Fig. 6. Result of experiment 2 on video number 4.

VII. DISCUSSION

In this section, we discuss the results of Experiment 1 and
Experiment 2. We show the visual validation, Performance
analysis and the answers to the research questions for each of
them respectively.

A. Experiment 1

We compare the single and multi-camera setup results based
on visual validation. The results in fig. 4 and fig. 5 are based
on video 4, where the subject walks in a zigzag pattern. Both
results show this pattern. The multi-camera setup shows a
much smoother result than the sample single-camera result.
The sudden spike in the multi-camera setup is an incorrect
measurement discussed in section VIII. The single-camera
setup does not have the anomalous spike as it only uses
one camera. If we look at the y-axis of both results, we
see that the single-camera setup, differently from the multi-
camera, struggles to distinguish the depth after about 600cm.
We judge the trajectory mapping performance of the single-
camera setup based on the sampled trace because the full
trace (at 30fps) takes too much time to compute. In table IV
we have an overview of the processing time duration for all
different models. The time is based on the sampled rate (the
process calculates the depth every five frames), not the full
trace. We can see that the processing time is always higher

TABLE IV
RESULTS FOR PROCESSING DURATION OF MONOCULAR DEPTH

PERCEPTION.

Model name Video Number Video Duration (seconds) Processing Duration (seconds)

City Scapes 4 9 15.2

Eigen 4 9 15.2

Kitti 4 9 15.2

City 2 Eigen 4 9 15.4

City 2 Kitti 4 9 15.2

City Scapes Resnet 4 9 23.2

Eigen Resnet 4 9 23.2

Kitti Resnet 4 9 24.2

City 2 Eigen Resnet 4 9 23.4

City 2 Kitti Resnet 4 9 23.2

than the video duration, even at the sample rate. A single
frame takes about 0.30 seconds to process with a normal
network and 0.43 with resnet. Hence, the maximum number
of frames we can process each second is about 2-3, depending

on the network. We evaluate the single-camera setup on the
sampled trace with a sample rate of 5 (6fps). The experiment
is executed using real video data. We compared two scenarios,
one with two cameras combined using Triangulation to map
the trajectory and one with a single camera combined using
monocular depth perception to map the trajectory. Comparing
them, we noticed that the trajectory mapping created using Tri-
angulation is much smoother than the mapping created using
monocular depth perception. We also noted that after about
600cm, the single-camera setup had trouble distinguishing the
depth. However, in both cases, the pattern of the target is
distinguishable. Furthermore, we calculated the time it takes
to compute the depth of the video. The experiment proves
that the multi-sensor data fusion approach outperforms the
single-sensor system in trajectory mapping. The multi-sensor
approach is much more accurate and stable than the single-
sensor approach. On top of that, the maximum depth the
monocular neural network can determine is limited to about
6 meters. Lastly, even if the maximum depth of the network
would increase, we are left with high computation time.

B. Experiment 2

The visual validation and the difference between the base-
line and UKF predictions judge the performance of UFK.
Looking at the graph in fig. 6, we see that the baseline and
UKF both match the zigzag pattern of the target. The baseline
and UKF are also very similar. Therefore, we calculate the
difference between the baseline and UKF. Table V shows the
overview of the results for each video. We calculate the total
difference (Total Diff. (cm)) for the entire video, the minimum
and maximum difference (Min/Max/Avg Diff. (cm)) for any
single point, the average difference for all points, and the
difference between the last positions (Diff. at last position
(cm)) given by the respective algorithms. The total difference

TABLE V
EXPERIMENT 2 RESULTS FOR EACH VIDEO.

Test Number Video Number Total Diff. (cm) Min/Max/Avg Diff. (cm) Diff. at last position (cm)

0 1 121.2 3.2/7.7/5.8 7.7

1 2 367.5 2.7/12.0/5.3 4.1

2 3 213.5 2.8/9.1/5.2 6.8

3 4 209.8 1.8/9.0/5.5 2.2

between UKF and the baseline can become relatively high as
shown in table V. However, the maximal distance between
two points for any video at any time is 12cm, and the average
never goes above 5.8 in any video.

We executed the experiment using multiple videos with
different walking patterns. We compared the baseline against
the UKF algorithm for every scenario. We visually validated
that the methods correctly display the target pattern for each
scenario. We also calculated the difference between the base-
line and UKF algorithm. We found that the average difference
between the prediction and actual position is around 5.5cm.
Although the total difference can get relatively high (e.g.,
367.5cm in test 1), we see how the algorithm is still close
to the baseline during the prediction and at the end of it.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:50:26 UTC from IEEE Xplore. Restrictions apply.

5474

As a result, the experimentation answers our second research
question: UKF can correctly predict the target’s trajectory and
stay very close to the actual trajectory.

VIII. THREATS TO VALIDITY

In Experiment 1 and Experiment 2, we used triangulation
for trajectory mapping as a comparison technique for our
proposed methods. However, we noticed a spike in the result
obtained from our experiments as shown in fig. 7. In this
subsection, we explain the reason for the spike and how it
influences the validity of both experiments.

Fig. 7. Results of Experiment 1:‘spike’ highlighted in the black box.

The spike occurs when the target is in line with both
cameras. We determined the position of the target by tracking
the target from both cameras, taking the x-coordinate of the
centroid of the tracking box around the target, calculating the
angle towards the target from both cameras and then using
those to draw virtual lines to see where they cross, as explained
in Section V. As the tracking of cameras does not bring
accurate and stable results, and the position of the cameras is
only an approximation, we grouped angles and averaged them
out to compensate this approximation. However, still in some
circumstances the angle toward the target from both cameras
overshoot and miss each other, as shown in fig. 8.

Fig. 8. Example of overshooting angles.

The black box in fig. 7 represents the angles overshooting.
The lines cross but at the wrong coordinates, creating the

spike. This situation does not pose any threat to the validity of
our results. In the first experiment, we compared the mapped
trajectory of the multi-sensor and single-sensor approaches;
the spike only occurs in the multi-sensor setup when the
target is in line with the cameras, and the rest of the graph is
still helpful for comparison against the single sensor setup.
In the second experiment, we compared our method using
UKF against the one with triangulation. UKF can perfectly
cope with sudden changes and can predict the trajectory of
a target even with very rough non-linearity, only at the point
of the spike, the uncertainty rises because there is no trust in
its prediction. Although the spike does not pose any validity
threats, we still proposed two possible corrections to this
situation. Firstly, we corrected the spike by taking a range of
coordinates instead of a single coordinate in both experiments.
Secondly, we calculated where the two ranges instead of where
two lines hit and took the median coordinate in our second ex-
periment by altering the UKF algorithm and adding restrictions
based on the boundaries of human behavior. Hence, instead of
abandoning UKF predictions and bringing uncertainty to our
results (like the behavior in our second experiment), we added
some constraints (such as maximum speed per second) to the
model to avoid anomalous behaviors.

IX. CONCLUSION

Currently, the third generation of surveillance systems takes
advantage of cloud computing, affordable sensors, and ad-
vanced algorithms. However, there is a lack of a general
architecture framework for these systems. In this paper, we
proposed our architecture framework for big data analysis for
multi-sensor surveillance systems, defining four layers from
physical sensors to the user analytic monitoring, with the
aim of designing trajectory prediction of a target within a
multi-sensor surveillance system. Consequently, we defined
two research questions in the field of surveillance systems
and two respective experiments to answer them. The first
experiment compared a multi-camera data fusion approach
using triangulation against a single-camera approach using
monocular depth perception on their ability to map the tra-
jectory of a target. The second experiment used UKF as
a data fusion approach to predict a target’s trajectory and
compared to our baseline with triangulation. To create the
data for the experiments, we recorded real videos outside in
a backyard. We placed two cameras across from each other
so that they monitored the same scene and asked our target to
perform several different walking patterns. We concluded that
the multi-camera approach works best as it has a smoother
trajectory and does not have computation time limitations or
depth perception limitations. and UKF is suitable to predict
the trajectory of our target and stays close to our baseline
over time.

X. LIMITATIONS AND FUTURE WORK

This research did not consider the multi-target multi-
tracking problem. In reality, multiple targets need to be tracked
simultaneously and the system should be able to keep track of

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:50:26 UTC from IEEE Xplore. Restrictions apply.

5475

them all. Therefore, we would continue to address this prob-
lem in our research on trajectory prediction for surveillance
systems. Furthermore, we would consider designing an object
recognition method related to the location itself. For instance, a
surveillance system for a train station, should recognize objects
such as people, bags, suitcases and trains in that location.
Moreover, we assumed that the approximate location of the
sensors is known and fixed, though mobile cameras (e.g.,
drones, smart glasses) with no fixed location could improve the
position measurement and consequently the prediction should
be considered as well. Finally, another line of research will
consider multidimensional paradigms (e.g., [36]) and hidden
relationships (e.g., [37]) as relevant extensions of our actual
framework.

ACKNOWLEDGMENT

The authors acknowledge the work of Tom van der Wielen
for his invaluable work in bootstrapping this research en-
deavor. This work was partially supported by project SER-
ICS (PE00000014) under the MUR National Recovery and
Resilience Plan funded by the European Union - NextGener-
ationEU.

REFERENCES

[1] T. D. Räty, “Survey on contemporary remote surveillance systems for
public safety,” IEEE Transactions on Systems, Man and Cybernetics
Part C: Applications and Reviews, vol. 40, no. 5, pp. 493–515, 2010.

[2] R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. Targio Hashem,
E. Ahmed, and M. Imran, “Real-time big data processing for anomaly
detection: A Survey,” International Journal of Information Management,
vol. 45, no. February, pp. 289–307, 2019.

[3] C. S. Regazzoni, V. Ramesh, and G. L. Foresti, “Special issue on video
communications, processing, and understanding for third generation
surveillance systems,” Proceedings of the IEEE, vol. 89, no. 10, pp.
1355–1367, 2001.

[4] G. Cascavilla, D. A. Tamburri, F. Leotta, M. Mecella, and W. Van
Den Heuvel, “Counter-terrorism in cyber–physical spaces: Best practices
and technologies from the state of the art,” Information and Software
Technology, vol. 161, p. 107260, 2023.

[5] D. De Pascale, M. Sangiovanni, G. Cascavilla, D. A. Tamburri, and W.-J.
Van Den Heuvel, “Securing cyber-physical spaces with hybrid analytics:
Vision and reference architecture,” in Computer Security. ESORICS 2022
International Workshops, 2023, pp. 398–408.

[6] D. De Pascale, G. Cascavilla, M. Sangiovanni, D. A. Tamburri, and
W.-J. van den Heuvel, “Internet-of-things architectures for secure cy-
ber–physical spaces: The visor experience report,” Journal of Software:
Evolution and Process, vol. 35, no. 7, p. e2511, 2023.

[7] X. Wang, “Intelligent multi-camera video surveillance: A review,” Pat-
tern Recognition Letters, vol. 34, no. 1, pp. 3–19, 2012.

[8] R. Langone, A. Cuzzocrea, and N. Skantzos, “Interpretable anomaly
prediction: Predicting anomalous behavior in industry 4.0 settings via
regularized logistic regression tools,” Data Knowl. Eng., vol. 130, p.
101850, 2020.

[9] A. Cuzzocrea, “Retrieving accurate estimates to OLAP queries over
uncertain and imprecise multidimensional data streams,” in Scientific
and Statistical Database Management - 23rd International Conference,
SSDBM, ser. Lecture Notes in Computer Science, vol. 6809. Springer,
2011, pp. 575–576.

[10] A. Cuzzocrea, C. K. Leung, and R. K. MacKinnon, “Mining constrained
frequent itemsets from distributed uncertain data,” Future Gener. Com-
put. Syst., vol. 37, pp. 117–126, 2014.

[11] E. G. Rieffel, A. Girgensohn, D. Kimber, T. Chen, and Q. Liu, “Geo-
metric tools for multicamera surveillance systems,” 2007 1st ACM/IEEE
International Conference on Distributed Smart Cameras, ICDSC, pp.
132–139, 2007.

[12] M. I. Ribeiro, “Kalman and extended kalman filters: Concept, derivation
and properties,” Institute for Systems and Robotics, vol. 43, p. 46, 2004.

[13] D. Simon, Optimal state estimation: Kalman, H Infinity, and nonlinear
approaches, 2006.

[14] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter
to nonlinear systems,” Signal Processing, Sensor Fusion, and Target
Recognition VI, vol. 3068, p. 182, 1997.

[15] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter
for nonlinear estimation,” IEEE 2000 Adaptive Systems for Signal
Processing, Communications, and Control Symposium, AS-SPCC 2000,
pp. 153–158, 2000.

[16] Replication-Package, “Designing multi-sensorial information systems: a
dual case-study,” https://doi.org/10.5281/zenodo.8308946, 2023.

[17] H. N. Hu, Q. Z. Cai, D. Wang, J. Lin, M. Sun, P. Kraehenbuehl, T. Dar-
rell, and F. Yu, “Joint monocular 3D vehicle detection and tracking,”
Proceedings of the IEEE International Conference on Computer Vision,
vol. 2019-October, pp. 5389–5398, 2019.

[18] X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang, and X. Fan, “Accurate
monocular 3D object detection via color-embedded 3D reconstruction
for autonomous driving,” Proceedings of the IEEE International Con-
ference on Computer Vision, vol. 2019-October, pp. 6850–6859, 2019.

[19] J. M. U. Vianney, S. Aich, and B. Liu, “RefinedMPL: Refined monocular
PseudoLiDAR for 3D object detection in autonomous driving,” arXiv,
2019.

[20] X. Weng and K. Kitani, “Monocular 3D object detection with pseudo-
LiDAR point cloud,” Proceedings - 2019 International Conference on
Computer Vision Workshop, ICCVW 2019, pp. 857–866, 2019.

[21] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular
depth estimation with left-right consistency,” Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017,
vol. 2017-January, pp. 6602–6611, 2017.

[22] M. A. Bakr and S. Lee, “Distributed multisensor data fusion under
unknown correlation and data inconsistency,” Sensors (Switzerland),
vol. 17, no. 11, 2017.

[23] Y. Bar-Shalom and X.-R. Li, “Estimation and tracking- principles,
techniques, and software,” Norwood, MA: Artech House, 1993.

[24] T. J. Ellis and J. Black, “A multi-view surveillance system,” IEE
Colloquium (Digest), vol. 3-10062, pp. 59–63, 2003.

[25] J. Black and T. Ellis, “Multi camera image tracking,” Image and Vision
Computing, vol. 24, no. 11, pp. 1256–1267, 2006.

[26] A. Chilgunde, P. Kumar, S. Ranganath, and H. Weimin, “Multi-Camera
Target Tracking in Blind Regions of Cameras with Non-overlapping
Fields of View,” pp. 42.1–42.10, 2012.

[27] J. Howse, OpenCV Computer Vision with Python.
[28] A. Brdjanin, N. Dardagan, D. Dzigal, and A. Akagic, “Single Object

Trackers in OpenCV: A Benchmark,” INISTA 2020 - 2020 International
Conference on INnovations in Intelligent SysTems and Applications,
Proceedings, 2020.

[29] T. W. Mi and M. T. Yang, “Comparison of tracking techniques on 360-
degree videos,” Applied Sciences (Switzerland), vol. 9, no. 16, 2019.

[30] A. Lukežič, T. Vojı́ř, L. Čehovin Zajc, J. Matas, and M. Kristan,
“Discriminative Correlation Filter Tracker with Channel and Spatial
Reliability,” International Journal of Computer Vision, vol. 126, no. 7,
pp. 671–688, 2017.

[31] P. Lytrivis, A. Amditis, and G. Thomaidis, “Sensor data fusion in
automotive applications,” 2009.

[32] A. Steinberg and C. Bowman, “Revisions to the JDL Data Fusion
Model,” 2001.

[33] J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. Waltz, and F. White,
“Revisiting the JDL data fusion model II,” Proceedings of the Seventh
International Conference on Information Fusion, FUSION 2004, vol. 2,
pp. 1218–1230, 2004.

[34] Appendix, “Designing multi-sensorial information systems: a dual case-
study,” https://doi.org/10.6084/m9.figshare.24073308, 2023.

[35] K. Farkhodov, S.-H. Lee, and K.-R. Kwon, “Object tracking using csrt
tracker and rcnn.” in BIOIMAGING, 2020, pp. 209–212.

[36] A. Cuzzocrea and P. Serafino, “LCS-hist: taming massive high-
dimensional data cube compression,” in EDBT 2009, 12th International
Conference on Extending Database Technology, ser. ACM, vol. 360.
ACM, 2009, pp. 768–779.

[37] Z. Wu, W. Yin, J. Cao, G. Xu, and A. Cuzzocrea, “Community detec-
tion in multi-relational social networks,” in Web Information Systems
Engineering - WISE 2013 - 14th International Conference, ser. Lecture
Notes in Computer Science, vol. 8181. Springer, 2013, pp. 43–56.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:50:26 UTC from IEEE Xplore. Restrictions apply.

