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a b s t r a c t

K-Anonymity is a property for the measurement, management, and governance of the data anonymiza-
tion. Many implementations of k-anonymity have been described in state of the art, but most of them
are not practically usable over a large number of attributes in a ‘‘Big’’ dataset, i.e., a dataset drawing
from Big Data. To address this significant shortcoming, we introduce and evaluate KGen, an approach
to K-anonymity featuring meta-heuristics, specifically, Genetic Algorithms to compute a permutation
of the dataset which is both K-anonymized and still usable for further processing, e.g., for private-by-
design analytics. KGen promotes such a meta-heuristic approach since it can solve the problem by
finding a pseudo-optimal solution in a reasonable time over a considerable load of input. KGen allows
the data manager to guarantee a high anonymity level while preserving the usability and preventing
loss of information entropy over the data. Differently from other approaches that provide optimal
global solutions compatible with smaller datasets, KGen works properly also over Big datasets while
still providing a good-enough K-anonymized but still processable dataset. Evaluation results show how
our approach can still work efficiently on a real world dataset, provided by Dutch Tax Authority, with
47 attributes (i.e., the columns of the dataset to be anonymized) and over 1.5K+ observations (i.e., the
rows of that dataset), as well as on a dataset with 97 attributes and over 3942 observations.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
-
1. Introduction

The amount of data being produced and processed, both online
nd offline, is exponentially increasing, and so is the costly con-
umption of resources to carry such processing to fruition. On the
ne hand, maintaining data anonymity is a must-have, especially
n sight of the severe sanctions connected to potential violations
f the General Data Protection Regulation [1]. On the other hand,
any agencies want or need to exploit such data for commercial
urposes or public safety and security, implying that data should
e usable.
It is, hence, fundamental to provide fast and reliable tech-

iques to the stakeholders that guarantee the privacy and
nonymity of the data and, at the same time, maintain the
ata’s usefulness. This paper introduces and evaluates KGen,
n approach to state-of-the-art privacy-preserving technologies
mplemented using a metaheuristic-based approach.

The process starts with a dataset, and, through an anonymiza-
ion process, it provides a dataset anonymized. At the core of
Gen is the most widely known k-anonymity approach to

∗ Corresponding author.
E-mail address: d.de.pascale@tue.nl (D.D. Pascale).
ttps://doi.org/10.1016/j.is.2023.102193
306-4379/© 2023 The Authors. Published by Elsevier Ltd. This is an open access a
c-nd/4.0/).
anonymization [2]. K-anonymity is defined as the condition where
fore, for each record in that dataset, there are at least other k-1
records indistinguishable from it.

The K-anonymity property is classified as an NP-Hard prob-
lem, as proved by Meyerson et al. [3]. Aggarwal [4] shows the
problem raised by any K-anonymity algorithms applied with large
datasets. When a dataset contains many attributes to anonymize,
it becomes difficult to anonymize them without an unacceptably
high amount of information loss.

Though it is not possible to anonymize a large dataset without
loss of information, with KGen we aim to provide an anonymized
dataset on the K-Anonymity property. In the scope of KGen,
K-anonymity needs to be traded-off against the usefulness of
data. At the same time, several algorithms address this prob-
lem, providing an optimal solution [2,5–8], all known approaches
merely work on a relatively small number of attributes with a
reduced level of generalization for each attribute. While the num-
ber of attributes that need to be anonymized grows, complexity
increases to obtain a usable dataset.

To account for the trade-off mentioned above, KGen fea-
tures an approach based on Genetic Algorithms [9] providing a

pseudo-optimal solution in a time useful for practical usage We
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ompared KGen with other approaches from the state-of-the-art
n order to validate its results.

The main goal of this work is to provide an approach useful
n an industrial context. To this end, we defined the following
esearch question:

Main RQ1: Is the performance of the proposed approach useful
for its intended stakeholders?

To answer the main research question, we outlined three
ubsequent research questions:

RQ1 Does KGen perform when compared to state-of-the-art ap-
proaches? To address this RQ We first compared our ap-
proach to existing ones by means of execution time to
generate the best-anonymized dataset.

RQ2 How accurate are KGen solutions compared to state-of-the-
art approaches? To answer this question, we proposed a
measure of accuracy to measure how the pseudo-optimal
solution is far from the optimal solution.

RQ3 What is the quality of KGen solution? We measured the
quality of a solution using generalization and suppres-
sion metrics defined in the state-of-the-art and discussed
in Section 2.3.

Moreover, to evaluate the applicability in a large context sce-
ario, we outlined a followup main research question:
Main RQ2: To what extent can the case-specific evaluation gen-

ralize to much larger datasets?
Therefore, in order to evaluate KGen in an industrial con-

text, the approach was used a real-world sample dataset pro-
vided by the Dutch Tax Authority for fraudulent transactions.
The evaluation aims at accounting for KGen’s real-life applica-
bility. Moreover, we led a second experimentation, using the
‘‘c2k_data_comma.csv’’ dataset [10] to prove the applicability of
the approach using a large dataset. The experimentation has
been done using OLA [7], a state-of-the-art approach for the
dataset k-anonymization, a brute force approach and a meta-
heuristic random approach to evaluate the goodness of KGen.
The experimentation reveals promising results and shows that
KGen is an approach capable of providing a good-enough solution
in less than 5 h:05 m:40 s (the worst case recorded with the
‘‘c2k_data_comma.csv’’ dataset and 25 quasi-identifiers attributes
to anonymize). KGen showed to be able to find results up to
25 attributes to anonymize, under the limited-time set of 15 h
differently from other approaches that provided results up to 7
attributes in much more time. Moreover, KGen demonstrates to
preserve the quality of data correctly, a critical feature in order
to keep the dataset qualitatively usable.

From a software and information systems engineering per-
spective the concrete usage of our proposed method KGen is
twofold: (a) privacy-aware data-intensive applications [11,12]
could be designed using KGen as a middleware to anonymize
datasets before processing automatically; (b) compliance officers
can use KGen to experiment with processed and non-processed
data to quantify the extent of privacy ‘‘damage’’ carried out by
data processors.

The remaining part of the paper is organized as follows.
Section 2 introduces the state of the art of the anonymization
process and the main works related to anonymization. Section 3
introduces KGen, explaining all its components. Section 4 outlines
the research design of the work. It describes the dataset used
for the experimentation, the metrics used to evaluate the RQs
illustrated above and the algorithms used for the comparison
study. The results o this work are shown in Section 5. Section 6
contains the discussion above the results obtained in Section 5.
In Section 7 are discussed the threats to validity found in KGen.
Lastly, Section 8 summarizes the main contributions of KGen and
sketches future research directions.
2

2. Background and related work

This section is organized in three main subsections: the first
one describes the anonymization process to allow a better under-
standing of the purposes behind this work; the second subsection
explains what a genetic algorithm is — hence laying the technical
foundations behind the metaheuristic underlying KGen. Third,
finally, we showcase the known k-anonymity implementations in
the state of the art to which KGen can be compared.

2.1. Anonymization

The anonymization process starts from a given dataset and
generates an anonymous dataset. A dataset is composed of multi-
ple observations with several different attributes. From a privacy
perspective, there are two different kinds of attributes in any
dataset [2]:

• Identifiers. An Identifier attribute can uniquely identify a
row in the dataset. In the anonymization process, these are
suppressed (this process is explained more in-depth in the
next section).
• Quasi Identifiers. Are the set of attributes that can be su-

perimposed with external information to reveal an individ-
ual’s identity [13]. Examples of common quasi-identifiers
are [14–17]: dates (such as birth, death, admission, dis-
charge, visit, and specimen collection), locations (such as
postal codes, hospital names, and regions), race, ethnicity,
languages spoken, aboriginal status, and gender.

During the anonymization process, the data is changed by
either removing or suppressing all identifiers [2]. This is essential
to prevent reverting to the original dataset. Thus, nullifying the
anonymization process. Stemming from this assumption, the only
data that needs to be (partially)-anonymized while simultane-
ously ensuring the highest amount of information usability as
possible are the quasi-identifiers.

Therefore, the central part of the anonymization process re-
volves around two main factors (1) the anonymization of those
attributes, quasi-identifiers, and (2) finding the optimal trade-
off between them. Hence, making it hard to uniquely identify
rows in a dataset by removing information and maximizing the
usefulness of the data, keeping as much as possible intact. In
turn, the usability of the dataset can be measured using the loss
of information metrics [7]. Metrics that are used to evaluate the
goodness of a possible k-anonymous are explained below.

2.2. K-Anonymity

To guarantee anonymity KGen harnesses the concept of k-
anonymity [2]. A dataset is called k-anonymous if a single row is
indistinguishable from, at least, other k-1 rows in the dataset.

Definition. Let T (A1, . . . , An) be a table and QIT (A1, . . . , Aj) be all
the quasi-identifiers of that table. T is said k-anonymous if, for
each row of T, there are at least k-1 rows equals to that row (for
a total of k indistinguishable rows).

Table 2 shows an example of anonymization of the dataset
in Table 1. The quasi-identifiers have been anonymized in or-
der to guarantee the anonymization. Applying different levels of
generalization for all quasi-identifier attributes, it is possible to
guarantee the anonymization with a certain degree of remaining
usability of the same dataset. Table 2, for example, shows a
k-anonymous dataset with a level of k = 2.
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Fig. 1. Example of lattice (Age–Postcode–Gender). Each node contain a possible level of generalization, for each attribute, and is connected to other nodes that can
be reached increasing or decreasing by one a single level of generalization of a given node.
Table 1
Original dataset. The attribute Name is an Identifier. Instead age, Gender and
Postcode are Quasi-Identifiers.
Name Age Gender Postcode Crime

Alice 24 F 80015 Assault
Max 28 M 80019 Kidnapping
Laurel 42 F 85073 Homicide
Frank 49 M 85071 Rape

Table 2
Dataset k-anonymized. Considering the QI, the number of indistinguishable rows
are two. So, the dataset is k-anonymized (k = 2).
Name Age Gender Postcode Crime

***** 20–30 P 8001* Assault
***** 20–30 P 8001* Kidnapping
***** 40–50 P 8507* Homicide
***** 40–50 P 8507* Rape

2.3. K-Anonymity operators

As mentioned before, the anonymization process revolves
round the anonymization of attributes. State of the art offers
everal approaches, mainly around four different anonymization
echniques, namely, generalization, suppression, anatomization
nd perturbation [2,18].

• Generalization. Given an attribute, its level of anonymity
can be represented as a hierarchy (Fig. 2). The higher the
level of generalization of an attribute, the more the dataset
is generalized, ensuring a high level of anonymization and a
correspondingly low level of usability.
• Suppression. If a dataset is not k-anonymized because there

is only a single row that does not allow to satisfy the k-
anonymity conditions, it is possible to suppress that single
row to have a k-anonymized dataset.
• Anatomization. Unlike generalization and suppression, the

anatomization operator does not work on QI and sensitive
data, but it works on the relationship between them. The op-
erator splits the QI and the sensitive data into two different
tables. To preserve the relationship between the two groups,
each table have a common attribute, groupID, All rows in the
same group have the same groupID [18].
3

• Perturbation. The perturbation replaces the original values
with synthetic data. The new record generated does not cor-
respond to a real-world record. In this way, for the attacker
is not possible to recover sensitive data, starting from the
data published.

KGen uses only generalization and suppression operators be-
cause, in the comparison study done in this work, the state-of-
the-art approach chosen uses only the two operators mentioned
above.

Generalization works on the generalization of all values of a
single attribute. Thus, no information is lost, but the entire dataset
is modified. Conversely, suppression works at a local level, its
approach revolving around the removal of entire rows, with the
remaining data left unchanged [2].

In both cases, however, it is always possible to compute the
generalization hierarchy of all the attributes as represented by a
lattice (i.e., repeating arrangement of points, see Fig. 1) [7]. Thus,
a node of the lattice represents a possible anonymized dataset
containing the level of generalization of each quasi-identifier
attribute. The lattice shown in Fig. 1 is the representation of
all possible configurations of the dataset in Table 1. The mini-
mum node in a lattice is the representation of a dataset with all
quasi-identifier attributes not anonymized (node (000) of Fig. 1);
the maximum node, instead, is the representation of a dataset
completely anonymized because contains the maximum level of
generalization of each quasi-identifier attribute (node (341) of
Fig. 1). Each arrow represents a possible generalization path taken
through the lattice. Thus, the height of a lattice is equaled to the
number of steps that, from the minimum node, are necessary
to reach the maximum node, increasing one by one the level of
generalization of a quasi-identifier attribute. Climb up the lattice
allows to have a higher level of anonymization of a dataset but a
lower utility (this concept is explained in Section 2.4).

Every path starting from the minimum node to the maximum
node is called strategy path. For example, in Fig. 1 the path [(000),
(001), (011), (021), (031), (041), (141), (241), (341)] is a strategy
path.

All strategy paths share the same starting node (the minimum
node of the lattice) and final node (the maximum node of the
lattice). As explained before, since the maximum node represents
a dataset completely anonymized, all strategy paths ensure the
existence of at least one k-anonymized node. 3 In the lattice,
every node could represent a k-anonymized dataset and, among
these, only one represents the optimal global solution. So, the goal
of k-anonymity is to find it in a reasonable time.
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Fig. 2. Generalization hierarchy of two quasi-identifiers attributes.
.4. Measuring loss of information

Using generalization and suppression, all possible datasets
n the lattice can be possible solutions. The way of preferring
dataset to another for KGen is to select the dataset whose

information is most useful in generalization. A dataset with more
generalization or more suppression has less information and,
hence, lower usability. KGen uses metrics to measure the usabil-
ity of an input dataset using different metrics of information loss.
The significant metrics for information loss are outlined below.
Subsequently, a selection is made and illustrated for KGen.

One metric for the level of information loss was proposed by
amarati [2]. The idea of the proposed approach is to take the k-
nonymity node with a minimum height level in the lattice. So,
or example, if in the lattice showed in Fig. 1 nodes (100) and
001) are both k-anonymized, using this metric, they have the
ame level of loss of information because they have the same
eight level in the lattice. However, the height lattice is not a
elpful metric since it does not consider each attribute’s maxi-
um level of generalization. In the previous example, there are

wo nodes: the first one has only the first attribute generalized
t level 1 of a maximum of 4 levels. Instead, the second one has
he last attribute that, in this case, is completely anonymized.
oreover, with the first metric presented, they have the same

evel of loss of information. Sweeney in [6,19] takes into consid-
ration as information metric also the level of generalization of
ach attribute. The aim is to evaluate, for each attribute, its level
f generalization, called ‘‘LOG’’, using this formula:

OGi =
logi
Hlogi

∀i = 1, . . . ,N (1)

where log is the actual level of generalization of the ith quasi-
identifier, Hlog is the height of the generalization hierarchy of the
4

ith quasi-identifier and N is the total number of quasi-identifier
attributes in the dataset. Hence, the level of generalization of a
single node is given by the average of all LOG values calculated.

LOG =
∑N

i=1 LOGi

N
(2)

For example, the node [1, 0, 0], representation of the attributes
Age/Postcode/Gender with a generalization hierarchy’s height of,
respectively, 4, 5 and 1, has a LOG level of ( 1

(4) + 0
(5) + 0

(1) ) / 3 =
0.083. Instead, the node [0, 0, 1] has a LOG level of ( 0

(4) + 0
(5) +

1
(1) ) / 3 = 0.33. With this metric, the node position in the lattice
and the level of generalization of each attribute are taken into
account. KGen uses this decaying information metric to find the
dataset with the most information and the highest anonymization
concurrently.

2.5. K-Anonymity complexity

Different works prove that an optimal k-anonymization al-
gorithm is an NP-Hard problem. Meyerson et al. [3] provide a
demonstration on the complexity classification of the problem,
finding that not only the k-anonymity algorithm is NP-Hard, but
also the k-anonymization with suppression of different attributes
is NP-Hard.

Aggarwal [4] shows that the k-anonymity complexity is highly
dependent on the size of the problem and that it is impossible
to apply the k-anonymization property on a dataset with lots of
quasi-identifier attributes with an acceptable level of information
loss.

Sun et al. [20] introduce two variants of the k-anonymization

problem, the Restricted K-anonymity problem and the Restricted
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-anonymity problem on attributes. They proved that both of
hem are NP-Hard for k ≥ 3, but, on the positive side, they de-
eloped a polynomial solution for the k-anonymization problem
ith k = 2.

2.6. Genetic algorithms: An overview

Genetic algorithms are simulations of natural selection, used
o solve optimization problems [21] such as the one reflected by
Gen. The natural selection process inspires genetic algorithms,
nd their workings and architecture reflect the natural process
f reproduction, proliferation, and selection. More specifically,
tarting from an initial population, the algorithm selects, with a
unction used to measure the goodness of an individual, the best
ndividuals and, from them, produces new individuals. Then, the
ld and the new population are re-evaluated to see which of them
urvives to the next generation. This process goes on until a stop
ondition is satisfied. In order to better explain this process, it is
ssential to describe the main components of a genetic algorithm:

olution encoding: a good solution representation plays a key
ole in a genetic algorithm because all future evaluations are
pplied to all solutions. So, if a solution is easy to evaluate,
hen the entire algorithm’s complexity is low. A solution typically
onsists in an array of values. As a first step, a random population
s generated. Then the algorithm tries to improve its solutions in
rder to find the best solution.

itness function: in implementing a genetic algorithm, a key
ole is played by the complexity of the fitness function. A fitness
unction is a good representation of the objective to achieve. If
t has low complexity, then the entire algorithm has a lower
omplexity. The choice of the proper fitness function should be
ade together with the choice on the solution encoding because

hey are highly correlated. The fitness function is directly applied
o the solution, so if they are incompatible, then the evaluation
rocess is more complicated.

enetic operator: Genetic operators are functions that automat-
cally allow the generation of new chromosomes, starting from
he previous population. There are three different types of oper-
tors: selection, an operator used to find the best chromosome
n the population; crossover, a ‘‘mating process’’ applied to two
hromosomes to generate two new chromosomes; mutation, op-
rator used to mutate a single chromosome to avoid the genetic
lgorithm convergence into a local optimal solution [21].

.7. Related work

There are many works on k-anonymization and its practical
mplementation. Samarati et al. [2] provide a k-minimal general-
zation algorithm to apply a binary search to find all k-anonymous
ode, selecting all nodes with the least steps as solutions. If there
s more than one node as a solution, the algorithm selects one
andomly or using other criteria, as the information loss. How-
ver, the node with the lowest distance vector is not guaranteed
he optimal solution because they could be other nodes with a
igher distance value but with a lower level of information loss.
or this reason, the algorithm does not provide the optimal global
olution.
Similarly, the Datafly algorithm adopts a heuristic based on the

ttribute [5,6]. The most distinct attribute is taken into account
s how next generalized attribute. The process continues with
ew distinct attributes that do not satisfy k-anonymous until
he k-anonymous criteria are satisfied. This approach does not
uarantee the minimum k-anonymous solution, however, the
ound solution is always k-anonymous.
5

Kirsten et al. Incognito exploits a bottom-up approach with a
breadth-first strategy to navigate the lattice to find all k-minimal
distance vectors [8]. After detecting all vectors, the algorithm
calculates their information loss to select the solution with the
least information loss as the optimal solution. This algorithm can
find, in this way, a global optimum.

Besides, the Optimal Lattice Anonymization (OLA) The OLA
algorithm is an improvement of Incognito and Datafly algo-
rithms [7]. All the anonymization processes, as shown in Fig. 1,
may be represented as a lattice. The goal of the OLA algorithm is
to find the optimal node in the lattice that must be k-anonymous
and with minimum loss of information. The approach embraces a
binary search algorithm for each strategy path. When the optimal
node in a strategy path is reached, the algorithm commences
to analyze the next strategy hub, and so on. In the end, the
algorithm holds a list with all k-minimal nodes for each strategy
path. At this point, it is chosen only the node with the minimum
information loss. Thus, OLA, as Incognito, can provide a globally
optimal solution.

Bayardo et al. [22] present a new approach to explore the
space of possible combinations developing data-management
strategies to reduce reliance on expensive operations. They can
find an optimal solution under two representative cost mea-
sures and a wide range of k. Moreover, they can provide good
anonymizations where the input data or input parameters pre-
clude finding an optimal solution in a reasonable time.

Lyengar shows an example of a Genetic algorithm applied on
the k-anonymity problem [23]. It seems to generate good results,
as we can see from the experimentation done in their work.
Nevertheless, they considered only a dataset with eight quasi-
identifier attributes, lacking more considerable experimentation.

Among all of these k-anonymization algorithms, only OLA and
Bayardo’s algorithm proved that their results are better than the
others (Datafly, Samarati’s algorithm) [7,22]. For this work, we
realized a comparison only with OLA because we found differ-
ent implementations of it, differently from Bayardo’s approach.
Furthermore, we did not realize a comparison with Lyengar’s GA
because of lacking a pseudo-code of the algorithm or a repository
with their work.

3. Scalable K-Anonymization: KGen explanation

This section describes KGen from a technical perspective, elab-
rating (1) the general KGen architecture; (2) the KGen lattice
reprocessing; (3) solution encoding; (4) solution fitness; (5)
enetic operators.

.1. KGen architecture

An overview of KGen architecture is shown in Fig. 3. Process-
ng of data starts with an input phase in which KGen receives a
ataset to anonymize along with configuration parameters such:
a) the generalization strategy to be adopted; (b) attributes’ in-
ormation type, that is, whether they are Identifiers or Quasi-
dentifiers. As explained by Samarati et al. [2], there are different
eneralization strategies, assuming the existence of different do-
ains, including generalized values and mapping between each
omain and domains generalization of it. Thus, for example, the
ostcode can be generalized, dropping, from the right, the least
ignificant value (as shown in Fig. 2(a)).
The subsequent processing phase is the core of the KGen

pproach. An overview of this phase is provided in Algorithm 1.
he first step of KGen processing phase is the preprocessing of
he lattice for size reduction. The next step is an iteration of the
Gen Genetic Algorithm (GA) implementation. In the KGen-GA
tep, KGen tries to converge to the optimal solution following the
A meta-heuristic approach recapped in Section 2. The output of
he processing phase is the k-anonymized dataset using the best
olution provided by KGen.
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Fig. 3. KGEN Pipeline. It is divided into three steps (separated bu dotted vertical lines), input, processing, and output; the KGEN-GA architecture is described in the
processing step.
Algorithm 1 KGEN Algorithm
Input: Dataset
Output: Dataset anonymized

1: procedure KGEN Algorithm
2: bounds← LatticePreprocessing(dataset)
3: t ← 0
4: Pt ← initRandomPopulation(bounds)
5: evaluate(Pt )
6: while evaluation < maxEvaluations do
7: Offsprings← empty offspring list
8: for (i = 0; i < populationSize; i+ = 2) do
9: parents← selection(Population)

10: tmpOffsprings← crossover(parents)
11: mutation(tmpOffsprings)
12: horizontalMutation(tmpOffsprings)
13: Offsprings.add(tmpOffsprings)
14: evaluation = evaluation+ 2
15: evaluate(Offsprings)
16: Pt ← Pt ∪ Offsprings
17: Pt+1 ← selection(Pt )
18: t ← t + 1
19: S ← minLOGSolution(Pt )
20: newDataset ← anonymize(dataset, S)
21: return newDataset

3.2. Lattice preprocessing

The lattice reduction is the first step of KGen execution. It
s based on the lattice pruning technique used in [8]. This step
ims at removing the complexity given by the generation of a
attice at the expense of introducing an acceptable permutation
omputational cost. It reduces the lattice size, thus the complexity
f the k-anonymization algorithm. The size-reduction process ex-
mplified in Fig. 1 shows an example of a non-reduced lattice. In
his example, the minimum node is <0, 0, 0> and the maximum
ode is <3, 4, 1>. The reduction technique is recapped in Table 3,
arts from (a) to (f); KGen slices the dataset into N vectors, one
er quasi-identifier (Table 3b), and validates the k-anonymity
6

Table 3
Example of the entire lattice reduction process.
Age Postcode Gender

24 80015 F
28 80019 M
42 85073 F
49 85071 M

(a) Original dataset not anonymized. The attributes
Age, Gender and Postcode are Quasi-Identifiers.

Age Postcode Gender

24 80015 F
28 80019 M
42 85073 F
49 85071 M

(b) First step of the reduction process. The original dataset is
split into n dataset, where n is the number of quasi-identifiers
in the original dataset. Each of these new datasets contain
only one of these quasi-identifiers.

Age Postcode Gender

20–29 8001* F
20–29 8001* M
40–49 8507* F
40–49 8507* M

(c) Age: log 2. (d) PC: log 1. (e) Gender: log 0.

(f) Second step of the reduction process. Each of the datasets
generates previously has been anonymized up to reach the
minimum level of anonymization. The level of generalization
of each of these datasets represent the new minimum level of
generalization of the lattice.

property iteratively on each vector thus obtained, until a new
minimum level of generalization is found (Table 3f). The idea is
that if at least one quasi-identifier attribute is not k-anonymized,
then the entire dataset cannot be anonymized too. Hence, the
computational cost for the execution of KGen on nodes containing
quasi-identifiers not anonymized is meaningless. Although this
approach poses limitations when anonymizing by suppression,
such limitations are addressed in the Threats to Validity section,
see Section 7.
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Fig. 4. Solution encoding of the lattice node ⟨2, 3, 0⟩.

.3. Solution encoding

A genetic algorithm aims to find the best pseudo-optimal
olution in a reasonable time. In this case, a solution is the
epresentation of a node in the lattice (see Fig. 1) that represents
ts level of generalization. In KGen, a solution is represented as an
rray of numbers, where in the ith position of the array contains
he value of the ith attribute in the lattice node. Fig. 4 shows the
olution encoding of the lattice node Age/Postcode/Gender <2, 3,
>. In the solution encoding process, the level of generalization
alues of Age, Postcode and Gender are respectively put in posi-
ions 0, 1 and 2. In a Genetic algorithm, the initial population is
nitialized randomly.

.4. Fitness functions

Every Genetic Algorithm needs to define its fitness function.
his function allows evaluating, for each iteration, all generated
olutions. As discussed in Section 2, there are two metrics for
he evaluation of a single node, namely, (a) k-anonymity and (b)
oss of information. In KGen, the loss of information is the only
etric used to evaluate the fitness of a solution. For every fitting
olution, k-anonymity is evaluated to see if a solution is feasible
r not. Thus, the goal of the KGen fitness function is to find the
owest value of loss of information of a node while ensuring, at
he same time, the k-anonymity property.

.4.1. Implementing K-Anonymity in KGen
We implemented KGen using the improved algorithm for k-

nonymity presented by Zhang et al. [24]. They propose a tech-
ique for improving the k-anonymity implementation by provid-
ng a new structure for the generalization hierarchy, namely, a
support map. A support map provides a structure in which each
ndistinguishable value is associated with its level of general-
zation, and all the rows contain an equal value. Table 4 shows
n example of a support map, applied on two quasi-identifier
ttributes, Age and Postcode. With the support map technique,
or each attribute, there is a related support map. This support
ap contains all values referred to that attribute, including all

heir generalization versions, and, for each value, they memorize
ts level of generalization and all rows that contain that value.
n Table 4a, the value 24 has a level of generalization 0 and is
ncluded only in the first row. Differently, its generalization 20–
9 has a level of generalization 2 and can be found in rows 1 and
. In this way, to see if a dataset is k-anonymized, the algorithm
ntersects all value rows of a given level of generalization to see
f there are no rows less than k. In Table 4, for example, with the
ntersection of log 2 of age and log 1 of Postcode, we have two
roups of rows: the first one containing rows 1 and 2, that contain
alues 20–29 and 8001*; the last one, that contains rows 3 and 4
ith values 40–49 and 8507*.

.4.2. Implementing loss of information in KGen
As discussed in Section 2.4, KGen implements the precision

criterion, as information loss metric. Each possible solution is
evaluated with the precision Formula (1). The goal of KGen’s
genetic algorithm is to minimize the precision of a solution to
find the best k-anonymized solution with the least precision.
7

Table 4
Example of support map for the quasi-identifiers AGE and
Postcode.
Value log Rows

24 0 [1]
28 0 [2]
42 0 [3]
49 0 [4]
20–24 1 [1]
25–29 1 [2]
40–44 1 [3]
45–49 1 [4]
20–29 2 [1, 2]
40–49 2 [3, 4]
0–49 3 [1, 2, 3, 4]
0–99 4 [1, 2, 3, 4]

(a) Age support map.

Value log Rows

80015 0 [1]
80019 0 [2]
85073 0 [3]
85071 0 [4]
8001* 1 [1, 2]
8507* 1 [3, 4]
800** 2 [1, 2]
850** 2 [3, 4]
80*** 3 [1, 2]
85*** 3 [3, 4]
8**** 4 [1, 2, 3, 4]
***** 5 [1, 2, 3, 4]

(b) Postcode support map.

3.5. Genetic operators

For the implementation of the KGen-GA approach, the follow-
ing operators are provided.

Selection. For the selection operator, KGen uses the Tour-
nament Selection operator [25] with penalty. The Tournament
Selection is used to select the fittest candidate for the current
generation. This operator assigns a probability to each solution
based on two criteria: the fitness value and the penalty of a
solution. The fitness value, in our case, is the loss of information
metric. Instead, the penalty is calculated as follows: when a new
solution is generated, its penalty value is 0. Suppose this solution
survives going to the next generation, its penalty increases by
1. The maximum value reachable is 9. Otherwise, with a value
of 10, the penalty decreases the probability to 0. The concept is
that the more a solution survives, the more the probability to be
chosen decreases. Therefore, the penalty is used as a weight for
solution optimality. An example of this process is shown in Fig. 5
(in the figure, the data regarding the level of generalization (LOG)
and the penalty are chosen randomly, just to explain the process
behind the KGen selection operator). The probability of selection
is calculated using this formula:

P(Sj) =
log(Sj) ∗ wj∑n

i=1(log(Si) ∗ wi)
(3)

Crossover. KGen provides its own Crossover implementation,
based on the double point crossover defined in [26]. Fig. 6(a)
shows the first step: (i) the PARENTS selected with the selection
operation, (ii) on top of them the crossover generates two new
chromosomes, one with the highest value extracted from PAR-
ENTS and the second one with the lowest values extracted from
PARENTS.

Subsequently, three possible scenarios manifest:

- Case 1. Both parents are k-anonymized. In this case, the
maximum node is anonymized because, by definition of
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Fig. 5. Selection process, based on LOG metric as fitness function. Based on their LOG value and their penalty, the selection generates all probabilities. The pie chart
shows the probability to choose a single solution.
Fig. 6. Example of crossover operator with only one of the parent k-anonymized. In this case, all nodes with dashed lines represent a possible final offspring of
he crossover.
strategy path, all nodes after a k-anonymized node are also
k-anonymized. If also the minimum node is anonymized,
add it to the final offspring. Otherwise, the algorithm adds a
random node between the minimum node and the first par-
ent node and another random node between the minimum
node and the second parent node;

- Case 2. Both parents are not k-anonymized. In this case, the
minimum node is not k-anonymized, and the final offspring
is the maximum node;

- Case 3. Only one of parents is k-anonymized. The minimum
node is not k-anonymized, and the maximum node is k-
anonymized. In this case, the last offspring is a random node
between the minimum node and the k-anonymized parent.

An example of case 3 is shown in Fig. 6, while Fig. 6(a) shows
he generation of the minimum and maximum nodes. Finally,
ig. 6(b) shows the crossover lattice that contains all the pos-
ible crossover’s offspring. In this case, only nodes with dashed
ines are considered since they represent the random solution
iscussed previously.
Mutation. In this case, KGen uses two different Mutation

echniques:

- Standard mutation. a classic mutation operator, inherited
from the approach in [9]. This approach changes a single
value of the chromosome and allows to change a possible

solution with another one from the same strategy path.

8

This operator needs to guarantee the principle of exploita-
tion [27] since this principle allows a solution to move up
or down its strategy path;

- Horizontal mutation. this operator allows the genetic al-
gorithm to change a solution with another solution of a
different strategy path. In this way, it is possible to guaran-
tee the exploration criteria. In order to change the strategy
path, it is necessary to change more than one value of the
solution and, to avoid having a solution in the same strategy
path, it is necessary, alternatively, increase and decrease the
chosen value, with a value between the minimum value
(or maximum value in case we need to increase the value)
and the actual node. An example of Horizontal mutation is
shown below:
Example
Minimum solution: 0 0 0 0 0
Actual solution: 2 2 2 2 2
Maximum solution: 4 4 4 4 4
Percentage of values to mutate: 50%. In this case it means that
we need to mutate 2 values
Random indexes chosen: 2, 3
Algorithm: The value in the index 2 can choose a random
value between its value and its maximum (so, from 2 to
4). The value in the index 3 can choose, instead, a value
between 2 and 0, its minimum.
Possible mutate solution: 2 2 3 0 2
This procedure of increasing and decreasing iteratively must

keeps going on until all indexes chosen have been mutated.
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Table 5
Generalization strategies applied on the K-Anonymity problem.
Generalization techniques

NUMBER Range generalization (3 –>0−5)
STRING Star generalization (NL805 –>NL80*)
DATE Date generalization

(01/01/1970 ->01/1970 –>1970)
PLACE Place generalization

(Den Bosch –>Noord Brabant)

4. Research design

The main goal of this work is to provide an approach to the
takeholders that can be used in a real case scenario. To that end,
e proposed KGen, a meta-heuristic approach based on a Genetic
lgorithm, to build an infrastructure capable of anonymizing a
ataset in a real case scenario. First, it means that the dataset
pecification cannot know a priori, so the approach should scale
ith the dataset provided. Secondly, we evaluated the algorithm
roposed with experimentation, using a large dataset to validate
he approach in a significant case context.

.1. Dataset

To answer the first main research question, we build an ex-
erimentation on top of the dataset provided by the Financial
orensics (F2) Taskforce West-Brabant-Zeeland. The task force
eeded a middleware capable of enabling forensic analysis with-
ut putting at risk the privacy of data owners and without any
uman intervention over the data; furthermore, this needed to
e done in computational times which were consistent with the

quantity of data available as opposed to the qualities of that data.
he task force has many instances of data constrained around a
easonable set of 50+ features. Therefore, the key requirement
as striking a balance between the computational complexity of
he algorithms involved and the anonymization reliability of such
lgorithms. We were provided with an experimental dataset in
he scope of our experimentation, which was completely spoofed
t the source. Namely, the data was disguised as a communication
rom an unknown source but still reflecting the original structure
nd properties. The dataset in question contained 47 attributes
nd 1599 observations involving four different attribute types:
ates, Numbers, Strings, Places. The generalization techniques
sed to generalize them are showed in Table 5.
To validate KGen with a large dataset, we led a second experi-

entation using the ‘‘c2k_data_comma.csv’’ dataset [10], which is
ommonly considered big data (in terms of attributes, or columns
of the dataset) for anonymization research, with its 97 attributes
and 3942 observations. The attributes analyzed are all numeric,
so the only generalization strategy applicable is the range gener-
alization [2]. The more the range of possible values increases, the
more a number is generalized (e.g., 23, at the level of generaliza-
tion 1 can be generalized in 20–25).

4.2. Metrics

To find an answer to our minor RQs outlined in Section 1, we
efined the evaluation metrics below.
The RQ1 compares the performance of the approach using

xecution time of the anonymization algorithm concerning the
omplexity of the dataset in input, as defined in related work [7].
-Anonymity property is an NP-Hard problem [3]. For this reason,
hen the number of quasi-identifier attributes increases, the
umber of nodes in the lattice increases and, consequently, the
xecution time to analyze them. Hence, the execution time is a
eliable indicator to compare approaches.
9

To answer to the RQ2, we proposed a measure of accuracy, ex-
pressed as the distance between the optimal solution and pseudo-
optimal solution. Each solution is part of a strategy path, and
there is an optimal solution for each strategy path. Following this
principle, the worst solution is the last node of this strategy path,
with an accuracy value equal to 0. Instead, the optimal node has
an accuracy value equal to 1. More in general, the accuracy of a
solution is computed as follows:

acci = 1−
|H(Si)− H(optS)|

H(worstS)− H(optS)
(4)

where H(x) is the height function of an x solution. The general
accuracy, instead, is the weighted arithmetic mean of all accuracy
values of our solutions, formally:

accuracy =
∑n

i=0(ωi ∗ acci)∑n
i=0 ωi

(5)

We choose the weighted arithmetic mean because of the 0 value
problem [28]; in our case, accuracy could be 0, and it is not
possible to use harmonic or geometric means with values less
or equal to 0. The problem with these metrics is that we should
always know the optimal solution to measure the accuracy level.
So, the only way to determine the accuracy level is to compare
an approach with another one that provides optimal solutions.

In the RQ3, we measure the quality of a proposed solution. The
uality is strongly related to the anonymization and usability of a
ataset. As previously stated, the metrics used to evaluate these
wo aspects are the level of generalization and the percentage of a
olution’s suppression. With the former, we measure the level of
eneralization of a solution, and the latter is used as an indicator
f the level of suppression of a dataset. All solutions provided
y an approach are k-anonymized. Therefore, the lower is the
evel of generalization and the level of suppression of a solution,
he better its quality. Since solutions could be more than one,
he final level of generalization is the minimum of all levels of
eneralizations of solutions and the level of suppression is taken
rom the solution found.

.3. Evaluated algorithms

In the scope of our evaluation, we select four k-anonymization
lgorithms from state of the art, which use generalization and
uppression techniques as well as an exhaustive algorithm featur-
ng a brute-force approach by enumeration [29]. Below are listed
he selected algorithms:

– Exhaustive Approach. This algorithm is an implementation
of the k-anonymization property assessment algorithm as
well as the generalization and suppression metrics on all
nodes in the input lattice. After the analysis of the entire
lattice, it is possible to find the minimum k-anonymization
node. This approach provides the optimal solution;

– OLA Approach. As explained in the Related Work section
(see Section 2.7), the OLA algorithm is an optimization of the
k-anonymization algorithm. Also, this algorithm converges
towards the optimal solution;

– KGen Approach. KGen is the approach that we want to test
within this work, designed to cope with big datasets;

– Random-Search Approach. This algorithm is included as
a validation baseline for KGen. The comparison with this
algorithm is due to genetic algorithms’ feature of introduc-
ing a certain degree of randomness in solution generation.
Hence, by comparing KGen to a Random algorithm, we aim
at establishing whether the KGen behavior is close or not to

a Random approach.
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Table 6
Metaheuristic parameters setup.

KGEN Random

maxEvaluations 5000 5000
populationSize 100 5000
crossoverRate 0.9 –
mutationRate 0.2 –
horizontalMutationRate 0.4 –

Fig. 7. Execution time evaluation results over the considered datasets.

The remaining approaches from state of the art discussed in
Section 2.7 were already compared in other previous works with
the OLA approach [7]. For this reason, they have not been used in
this evaluation study.

5. Results

For the comparative analysis, the experimentation was run
on a CPU i7-7700HQ 2.8 GHz, 16 GB RAM DDR4, on Windows
10 64 bit. The maximum threshold allowed for the suppression
technique required by the stakeholder is 0.5%. The computational
time limitations were set to 15 h. Others metaheuristic parame-
ters related to KGen and Random-Search Approach can be seen
in Table 6.
10
Fig. 8. Accuracy evaluation results over the considered datasets.

.1. RQ1: KGen performance

Fig. 7 plots execution times in a logarithmic scale. The exact
pproach can give results for a maximum of 6 QID for the c2k
ataset and 10 QID for F2 dataset while its computation halts or
rashes with the increase of QIDs. Conversely, KGen and random-
earch provide results until to 25 QID for c2k and 15 QID for
2.

.2. RQ2: KGen accuracy

Fig. 8 outlines results for accuracy. Given the limitation of
he exact approaches to provide the optimal solution for several
uasi-identifiers higher than 7 for the c2k dataset and 8 for the
eal dataset, the accuracy graph shows the accuracy level only up
o 7 or 8 quasi-identifiers.

As Fig. 8(a) shows, most approaches, including KGen offer
ccurate results with the apparent exception of the random ap-
roach, which, by definition, is bound to be non-accurate. On
ig. 8(b), the real data dataset results show that the accuracy
ecreases from the seventh quasi-identifiers.
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Fig. 9. Level Of Generalization on the dataset anonymized.

.3. RQ3: KGen solution quality

Figs. 9 and 10 show the level of generalization and suppression
f all approaches compared. In the scope of the plot, to evaluate
he extent of goodness for approaches different than exact ones
i.e., KGen and random), it is sufficient to evaluate how low are
heir curves.

Regarding the level of generalization, the KGen result, except
ith the F2 dataset with 7/8 quasi-identifiers, is always equal or

ower to the other approaches. Even when the other approaches
annot provide a solution, KGen provides better results than the
andom approach.
The suppression criteria, instead, presents a different behavior

epending on the dataset used. With the F2 dataset, the behavior
f KGen, for values less than 7, seems in line with the results
f the exact approach. However, the suppression level for values
igher than 7 is more chaotic, giving a problematic interpretation
f the result achieved. The c2k dataset, instead, presents curves
ith unstable behavior for all the approaches considered, making

t more challenging to analyze. Nonetheless, the KGen behavior is
qual to the exact approaches. Considering that exact approaches
rovide the best results, it means that KGen provides the same
11
Fig. 10. Level Of Suppression on the dataset anonymized.

good results as the exact approaches results. Considering the
analysis for both levels of generalization and suppression, we
can draw the following conclusions. First, the level of general-
ization analysis shows us how KGEN results align with the exact
approach and are better than the random approach. Differently,
the level of suppression analysis does not lead to any reliable
conclusion since the behavior of all the approaches is a bit chaotic.

6. Discussion

As expected from our results on RQ1 the state-explosion prob-
lem [30] does not allow to have the exact solution in a reasonable
time in all cases. More specifically, with more than 6 quasi-
identifier attributes for the c2k dataset and 10 quasi-identifier at-
tributes for the F2 dataset, it is unfeasible to run exact approaches.
Differently, with the usage of metaheuristics, we can provide
solutions until 25 quasi-identifiers attributes and opportunis-
tically continue if granted with the appropriate computational
means. Clearly, from that point onwards, also for metaheuristic
approaches is difficult to provide a solution. One factor strongly
related to the increasing of the execution time on metaheuris-
tics pertains to the maximum number of evaluations, based on
metaheuristic configuration (e.g., see Table 6) since the number
of nodes evaluated is directly related to these configurations.



D.D. Pascale, G. Cascavilla, D.A. Tamburri et al. Information Systems 115 (2023) 102193

C
p
K
n
t
i

i

c
k
t
b

t
m
–
o

f
p
d
d
a

onsequently, to decrease the execution time, operators and data
rocessing agents can fine-tune the maxEvaluation parameter of
Gen (or even the random approach) opportunistically and as
eeded. Another important aspect is that the slope of execution-
ime curves for the random approach is lower than KGen at the
ncrease of QID. This is because a single evaluation run in KGen
analyzes more than one single node, given that the crossover
operator continuously generates new nodes. This limitation can
be the object of future study by researchers and practitioners
interested to address its impact.

Moreover, concerning RQ2, the accuracy level shows how
KGen provides solutions that are identical ±.9% to the optimal
approach. It means that KGen can (a) converge using its genetics
operators to the optimal solution with small instances and (b)
to be very close to the optimum as the number of instances
increases. Conversely, the random approach initially provides a
good level of accuracy due to the number of evaluations concern-
ing the size of the problem. For example, if a lattice contains 300
nodes, with 5000 evaluations (setting of the random approach
described in Table 6), the random approach analyzes all nodes
in the lattice, providing a high level of accuracy. However, the
opposite is true exponentially with the increase of lattice nodes.

Focusing on RQ3, we can observe the level of generaliza-
tion and suppression of KGen as being very close to the level
of generalization of optimal approaches. This is a good indica-
tor of the power of our research solution. Most notably, our
approach (just as the random one) can provide solutions that
can deal with higher numbers of quasi-identifier attributes, a
feature where most optimal approaches fail. Unlike the random
approach, however, KGen provides excellent results in terms of
generalization level, considering the suppression applied. If the
random approach seems to have better results on large instances,
considering only the generalization level, we can see how this
is due to the high level of suppression applied by the random
approach itself. Looking at both metrics, we can easily understand
how KGen has the best results.

From the results of the three sub-research questions, we can
assume that KGen performs well in real case contexts. More-
over, given the dataset provided by the Taskforce West-Brabant-
Zeeland, we can anonymize their dataset with a good level of
anonymization, having the same results of exact approaches.

Unlike heuristic approaches, meta-heuristic approaches can
also perform well in a context where the dataset size, in terms of
the number of quasi-identifiers, is more extensive. Hence, a stake-
holder can use KGen in large contexts scenarios. Nonetheless, to
ensure the applicability in a general context, the approach needs
to be validated with more datasets.

Lastly, after providing the anonymized dataset, KGen provides
also metadata regarding the information loss for each dataset
attribute. Hence, the final user can estimate the damage entity
by mean of information loss of each attribute.

7. Limitations and threats to validity

This section outlines the major limitation we perceive in our
work, which reflects one of the optimizations that KGen features
n its processing and algorithms. As outlined in Section 3.2, KGen
features a lattice size reduction technique that limits the ap-
proach applicability in specific cases. Nevertheless, the technique
is essential since it can work on a smaller search space than
the original one, whose size could be untractable without ma-
jor software-defined infrastructure requirements. However, the
described technique introduces a vulnerability when, during the
anonymization process, also the suppression technique is intro-
duced. Preprocessing without suppression ensures that all lattice
nodes except for the new minimum node found in the process
 p

12
Table 7
Lattice reduction process with suppression criteria.
Age Postcode Gender

24 80015 F
28 80019 M
42 85073 F

(a) Example of a dataset not k-anonymized.

Age Postcode Gender

20–29 8001* F
20–29 8001* M
40–49 8507* F

(b) Age: LOG 2. (c) PC: LOG 1. (d) Gender: LOG 0

(e) Datasets k-anonymized, applying the suppression criteria
(with a max level of suppression of 35% of the entire dataset).
The final dataset contains only the first row.

are not k-anonymized. With the suppression active, instead, this
does not hold. Let us take into account the example in Table 7.
If we apply the suppression criteria (with a maximum level of
suppression set, by default, of 35%) on each dataset, in order
that all datasets are k-anonymized, we have the suppression of
the last row on the first and second dataset and the suppression
of the second row in the last dataset (Table 7b–7c–7d). At this
point, removing the second and third-row from the dataset, the
remaining dataset is composed by only the first row, with a final
level of generalization of <2, 1, 0>. Nevertheless, this dataset
is k-anonymized also without any generalization (<0, 0, 0>).
By applying the suppression criteria, it is possible to have one
k-anonymized node with a level of generalization less than the
minimum level of generalization provided by the preprocessing.
We are aware of this limitation and plan to address it in future
developments and iterations over this work.

8. Conclusion and future work

With the quickly increasing amount of digital data, there
emerges a growing need to provide support for fast and scal-
able data-processing capable of offering anonymization guaran-
tees. In this paper, we introduce KGen, a scalable approach to
data-intensive k-anonymization featuring genetic algorithms.

The KGen approach focuses on the assessment of the balance
between two critical, and opposite data quality attributes func-
tional to data-processing, namely, data privacy versus usefulness
of data. As aforementioned, KGen exploits genetic algorithms that
allow organically increasing the level of privacy of the data while
safeguarding that the data evidence, which is still usable e.g., in
terms of financial evidence and audit trails part of governmental
data-intensive processing.

KGen is a practical, scalable, data-intensive approach that
an effectively anonymize datasets embracing the well-accepted
-anonymization measure. The approach is supported by a proto-
ype coded in Java and tested through various experiments using
enchmarks and real-life industrial datasets.
Initial results look very promising. We have shown empirically

hat the behavior of KGen level of generalization metric perfor-
ance equally well as other optimization approaches, while KGen
in contrast to other approaches – can deal with a large number
f quasi-identifiers, and thus Big datasets.
Future work will focus on building a more robust and user-

riendly interface on top of the current prototype and more
ersonalized privacy measures. Besides, we intend to work on a
ynamic version of KGen, D-KGen, that can deal with streaming
ata that dynamically add/remove/alter the dataset on-the-fly
nd just-in-time, breaking the ‘‘closed-world assumption’’ under-
inning most of the existing approaches.
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