
2022 IEEE International Conference on Big Data (Big Data)

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 5662

Explaining IoT Attacks: An Effective and Efficient
Semi-Supervised Learning Framework

Giuseppe Cascavilla
TU/e, JADS, The Netherlands

g.cascavilla@tue.nl

Reinier Zwart
JADS, The Netherlands

r.b.w.zwart@tilburguniversity.edu

Damian A. Tamburri
TU/e, JADS, The Netherlands

d.a.tamburri@tue.nl

Alfredo Cuzzocrea
University of Calabria, Italy
alfredo.cuzzocrea@unical.it

Abstract—Cyber-attacks targeting Internet-of-Things (IoT) de-
vices are prevalent due to the limited security resources of the
target devices and their often limited connectivity. Explaining
such attacks is therefore greatly important to construct coun-
termeasures. Current methods of automated IoT attack analysis
require either large amounts of labelled data for classification,
or use clustering methods which can be inaccurate. However,
when a desired grouping of the data, as well as some prior
knowledge about some observations in the data is available,
approximate semi-supervised learning methods may be used to
create accurate cluster arrangements. We therefore investigated
the use of semi-supervised clustering approaches for creating
accurate clusters of IoT attack sessions based on their goals
and characteristic commonalities. We first manually created a
ground-truth grouping of recent IoT attacks based on their
goal. We differentiated the goal of each session according to the
purpose of the used commands and the taken approach, resulting
in a total of five classes. We then automatically constructed a
feature set suitable for clustering similar IoT attack sessions using
a method proposed in recent literature, and passed it to two dif-
ferent semi-supervised clustering algorithms using either labelled
data (SeededKMeans) or pairwise constraints (PCKMeans) as
prior knowledge. We found that both semi-supervised approaches
were able to create accurate cluster arrangements using only
small amounts of prior knowledge. Moreover, they outperformed
an entirely unsupervised KMeans algorithm in terms of accuracy.

Index Terms—IoT, Cybersecurity, Machine Learning, Cluster-
ization, SeededKMeans, PCKMeans, Supervised Analysis, Semi-
Supervised Analysis

I. INTRODUCTION

With an increasing amount of devices being connected
over network systems, the so-called Internet of Things (IoT)
phenomenon is ever growing. IoT entails of clusters of intel-
ligent systems which are able to compute and communicate
information with each other, allowing more or less complex
forms of swarm intelligence [1] towards many domain-specific
goals, e.g., crop harvesting, security monitoring, and more.
The ubiquity of the IoT allows it to be applied in many
different sectors [2]. However, IoT devices often have lim-
ited computing, storage, power and communication resources,
leaving little room for comprehensive security mechanisms
[3]. Their limited security in combination with their constant
connectivity make them a popular target for cyberattackers.
Successful attacks on IoT devices can result in detrimental
outcomes, such as data theft and Denial-of-Service [3], [4].
Due to IoT being increasingly interwoven in our everyday

lives, surpassing over 20.4 billion connected devices in 2020
according to [5], it is generally acknowledged that cyber-
attacks on IoT devices will become increasingly prevalent [6].
It is therefore crucial that such attacks and their approaches
are efficiently studied, so that counter-mechanisms can be
developed.

The IoT Kill Chain (IoTKC), created by [7], describes the
commonly observed structure of IoT attacks. Vulnerable de-
vices are first located in IoT attacks either through the sending
of connection requests on open ports or through network scans.
The targeted devices are then breached and entered through
brute force or dictionary attacks. Once entered, information is
gathered about the device. Preparations, such as modifications
in the settings of the device, are then made for the downloading
and installation of remote malware packages. A malware
package is then downloaded using some file transfer protocol
or simulated browser.

We can apply the IoTKC to the practical example of
the Mirai botnet attacks. Mirai, which targeted IoT devices,
continuously scanned the internet using its already infected
devices to find other IoT devices to target. After the vulnerable
devices were identified, the Mirai-infected devices breached
and entered them by attempting combinations of commonly
used default credentials. After entering the system, Mirai au-
tomatically checked if installation of its malware was possible
on the targeted device, and proceeded with the infection steps
of the IoTKC (i.e. prepare the device, download the Mirai
malware, grant the necessary permissions, install the malware
and remove traces). After infection, the targeted device became
another part of the Mirai botnet, which was used to launch a
large scale DDoS attack on DNS service provider [8].

To collect IoT attack data to analyse, we developed an
honeypot. Honeypots are non-production computer systems
designed for attracting cyber-attackers [3]. Honeypots deceive
attackers by feigning some (if not all) of the services found
on real devices, such as IoT devices. When the honeypot is
compromised, it logs all kinds of information about the attack,
e.g. the commands used in the attack.

IoT attack data logs are often large and therefore resource-
costly to analyze manually. Both supervised and unsupervised
Machine Learning (ML) approaches have therefore been pro-
posed to automatize a part of this big data analysis process
(e.g., [9], [10]). Supervised approaches rely on large amounts
of labelled data for classification rarely available in practice

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
66

54
-8

04
5-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

56
60

.2
02

2.
10

02
08

94

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:44:27 UTC from IEEE Xplore. Restrictions apply.

5663

(e.g. [11], [12]. Conversely, unsupervised approaches offer
an alternative procedure to grouping IoT attacks, requiring
no labelled data. However, the accuracy of these results is
unpredictable and cluster analysis is first needed to determine
how each cluster is formed (e.g. [13], [14]). Moreover, any
available prior knowledge about the data is disregarded in
unsupervised approaches.

A different approach exists somewhere in the middle of the
spectrum of supervised and unsupervised approaches: semi-
supervised clustering.

Two main types of semi-supervised clustering algorithms
exist: clustering algorithms using pairwise constraints and
using partially labelled data [15], [16]. Clustering algorithms
using pairwise constraints use knowledge about connections
between pairs of observations when creating clusters. Cluster-
ing algorithms using partially labelled data make use of any
known class labels of the observations. For example, if two
observations share a class label, it logically follows that they
should be assigned to the same cluster.

We decided to use semi-supervised clustering methods to
create accurate groupings of IoT attack sessions with similar
goals. This would offer a relatively cheap (i.e. in terms of
resource costs) alternative to grouping using classification,
since large amounts of labelled data would not be required.
Moreover, the resulting cluster arrangements may prove to be
more accurate than unsupervised clustering methods. Quickly
and cheaply creating accurate groupings of IoT attack sessions
based on their goal can be beneficial for the development of
counter-mechanisms, since we can then more efficiently study
similarities and dissimilarities between recent approaches of
attacks with the same or different goals. We therefore pose
the following main research question (RQ) in this paper:

RQ: Can semi-supervised methods be used to accurately
cluster IoT attack sessions according to their goals?

To formulate an approach which can be used to provide an
answer to the posed research question, we divide the question
into three sub-questions. First-of-all need to identify common
goals of the attacks and establish a ground-truth grouping that
accurately describes the sessions and their goals. We can then
compare this ground-truth grouping to the cluster labels of
any used cluster models to determine accuracy. Moreover,
any used semi-supervised models rely on the availability of
prior knowledge, which we make available by establishing the
desired grouping of the data. We therefore pose sRQ1:

sRQ1: How can IoT attack sessions be grouped based on
their goals?

Second, as far as we are aware semi-supervised clustering, in
the context of IoT attack analysis, has not yet been performed.
Therefore, applicable semi-supervised methods first needs to
be identified and properly applied. We consequently need to
consider which models to use, how to obtain a suitable feature
set, and how to obtain suitable subsets of prior knowledge from
the ground-truth grouping we established which the models
can use. We consequently pose sRQ2:

sRQ2: How can we apply semi-supervised methods for
clustering IoT attack sessions according to their goals?

Last, we need to identify the effectiveness of the semi-
supervised approaches. We therefore have to find the semi-
supervised models which output the most accurate cluster
labels when compared to the established ground-truth labels.
Moreover, we need to compare their accuracy to a fully
unsupervised approach, since using semi-supervised methods
of unsupervised approaches only makes sense if the clustering
results are more accurate. We therefore pose sRQ3:

sRQ3: How accurate are the predicted labels of the
semi-supervised clustering methods when compared to the

class labels?

We structure the rest of this paper as follows: first of all,
we analyze the available literature on IoT attack analysis and
describe the problem that follows. We then provide each of the
materials and methods we used in Section III. In Section IV,
we describe the results of the used clustering approaches.
In Section V we discuss our findings and provide a lessons
learned. Lastly in Section VII we discuss some limitations and
our future works.

II. RELATED WORK

In this section, we review the work related to the analysis of
(IoT) attacks to identify the current research gap in the field.
We systematically analyzed the work, starting with the type
of approach used, i.e. manual or automatized using machine
learning. We divided the automated approaches in supervised
and unsupervised approaches and describe related work using
each type of approach separately. Moreover, we determined
the overarching end goal for each approach, i.e. what the
researchers wished to achieve. It should be noted here that
this line of research has a very long tradition, even developed
in the related-context of data stream analytics (e.g., [17], [18]).

A. Supervised analysis

[12] analyzed the TCP flow of attacks, i.e. the sending and
receiving of packets between two systems. They labelled each
attack as not-so-severe (i.e. the attacker successfully entered
the system but did not execute any commands) or severe (i.e.
the attacker successfully breached the device and executed
at least one command). With the TCP flow as a feature set,
they then used four different machine learning algorithms in
order to classify the severity of the attacks: J48 Decision Tree
(DT), Naive Bayes learner, Logistic Regression and Support
Vector Machine. Results showed highest accuracy for the
DT algorithm. In [19] authors created a system capable of
classifying the threat level of attack sessions. They collected
data from a Cowrie honeypot, which they labelled according
to their threat level. Then used an A-priori rule generation
algorithm (see [20]) to generate rules based on the association
between used commands and the attack threat levels, so that
certain commands would be associated with sessions with a
higher or lower threat level. Using the feature set and the
threat level labels, they trained four classification algorithms

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:44:27 UTC from IEEE Xplore. Restrictions apply.

5664

to classify the threat level of the attacks. Random Forest model
showed the best accuracy (0.998).

[21] mimicked a smart factory environment in a honeypot to
collect botnet attack information. They used 10 features related
to botnet intrusion types to classify attacks as one of 4 attack
types: DDoS, DoS, reconnaissance and theft. Using Random
Forest (RF) classification, 96% accuracy was achieved in the
classification of these methods using the features.

B. Unsupervised analysis

In [11] authors used a clustering approach to identify
features useful for classifying IoT attacks. They used two
different feature sets: a feature set based on the credentials (i.e.
username/password combinations) the attackers used to try and
access the honeypot, and a feature set based on the commands
used in the attack session. Both methods were able to generate
distinct clusters and were therefore considered good indicators
of different attacks. Differently, authors from [13] analyzed
unique attack patterns in a IoT attack dataset collected with
Cowrie. They used three dimensions based on the actions
of the attacker for their analysis: depth of the interaction,
behaviour of the attacker and utilisation of resources. Using
these dimensions, they extracted 20 features which described
the actions performed in an attack by an attacker (e.g. send
connection request). They clustered the attacks using seven
different clustering algorithms, three of which showed approx-
imate distribution: Expectation Maximization (EM), KMeans
and FilteredClusterer (FC). However, training a RF classifier
algorithm on the clustering results showed only five features
were relevant for the classification process.

In [22] authors clustered unique commands used in IoT
attack sessions based on the similarity of their used commands
to create clusters of similar goals. They represented each
command as arrays containing counts of each word used in the
command and calculated the cosine similarity between every
pair of commands. The commands were then clustered using
Gaussian Mixture Model (GGM) clustering algorithm.

Authors in [14] stated that most of the approaches in the IoT
attack analysis literature required extensive domain knowledge
for manually correlating commands to create feature sets
for a clustering task. They proposed an automated method
of feature construction using an autoencoder, which could
automatically learn the semantic similarity between commands
used in IoT attack sessions. They first collected data from
a Cowrie honeypot, they then created an initial feature set
consisting of binary values for the presence of a command
keyword (e.g. rm, wget) in a session, as well as the total
amount of commands used and the total session time. The
feature set was then condensed using an autoencoder model
and clustered using different algorithms, such as KMeans. By
manually inspecting the results of the KMeans clusters, they
were able to observe differences and similarities between the
clusters of attacks, as well as the different levels of changes
between the attacks in a cluster.

C. Problem statement

We found that manual analysis was often done to achieve
categorizations of the IoT attack data, while automatized
approaches were either used for classification (supervised) or
clustering (unsupervised) of the data. The manual approaches
were time-intensive due to having to manually analyze the
available data. Our proposed automated supervised and unsu-
pervised learning approaches offer a quicker alternative to the
analysis of big data coming from log file of attacks perpetrated
to IoT devices. However, the supervised approaches relied
on large amounts of labelled data for a classification task.
In practice, large amounts of labelled data might not always
be available. The unsupervised approaches did not use any
labelled data, which made them unpredictable in terms of
accuracy, since cluster arrangements were formed entirely
unsupervised. Lastly, none of the proposed automatized ap-
proaches considered situations where a desired grouping of
the data is known and some prior knowledge about the data is
available to be leveraged, albeit not enough for classification
tasks.

III. RESEARCH METHODS

We propose using a semi-supervised approach for clustering
IoT attack sessions with similar goals in order to achieve
improved accuracy over currently used fully unsupervised
approaches to IoT attack clustering. We first give an overview
of the experimental configuration used for this study, after
which we elaborate on each of the used methods in more
detail in later sections.

A. Experimental configuration

In order to perform our study, we first collected recent IoT
attack data using a Cowrie honeypot and removed sessions
without command input, resulting in a dataset of 2.115 unla-
belled IoT attack sessions.

To answer sRQ1, we needed to provide every session with
a specific label based on their goal, which both established a
ground-truth grouping the cluster algorithms needed to aim for,
as well as a set of prior knowledge semi-supervised algorithms
could borrow from. We used two methods from previous
literature (i.e. [22], [23]) to manually divide the sessions in
two groups based on their goal. We then inspected approach of
each of the sessions assigned to both groups in order to create
a more specific label set, resulting in 5 unique classes. We
developed a tool for labelling the sessions according to these
5 classes, which we evaluated using inter-rater reliability, and
labelled all sessions accordingly.

To answer sRQ2, we developed semi-supervised approaches
to clustering our IoT attack data. We first automatically
extracted a feature set suitable for the clustering task using an
autoencoder, following a state-of-the-art procedure proposed
in recent literature [14]. We initially constructed 72 features
from the data based on command keywords, the total session
duration and the total amount of commands used in the
session. We then used an autoencoder to extract an efficient

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:44:27 UTC from IEEE Xplore. Restrictions apply.

5665

representation of the feature set, resulting in a final feature set
of 20 features.

We then selected two state-of-the-art semi-supervised clus-
tering algorithms, which used different types of prior knowl-
edge: a SeededKMeans algorithm [24], which used partially
labelled data, and a PCKMeans algorithm [25], which used
pairwise constraints.

Using the ground-truth labels we established to answer
sRQ1, we obtained small subsets of prior knowledge for
the semi-supervised algorithms to use. We randomly sampled
small subsets of ground-truth labelled sessions from each class
for the SeededKMeans algorithm. As advised by [25], we
used an active learning scheme for finding sets of informative
pairwise constraints for the PCKMeans algorithm, determining
a pairwise constraint of a pair by comparing their ground-truth
labels.

To answer sRQ3, we considered different configurations
of each of the semi-supervised models to determine their
accuracy at variable amounts of available prior knowledge and
different hyperparameters (if relevant). Using variable amounts
of prior knowledge for the models is interesting, since in
practice the amount of available prior knowledge will most
likely vary heavily as well, and knowing which model per-
forms better at what level of prior knowledge can be beneficial
in these situations. We determined accuracy by comparing
the predicted cluster labels of the models to the ground-truth
labels we established to answer sRQ1. We selected the Ad-
justed Mutual Information (AMI) metric to determine cluster
accuracy, which we calculated for each model configuration.
To show effectiveness of the semi-supervised models over an
unsupervised approach, we ran different configurations of a
KMeans approach using the same feature set and calculated
the accuracy of its cluster labels.

B. Data collection

Since this study relies on recent IoT attack data and no
(recent) datasets were, as far as we were aware, available
online, we collected new data was for the purpose of this
study. We used a Cowrie honeypot [26], which can log brute
force attacks and shell interactions performed by attackers. It
can simulate the services found on IoT devices [13], [14], [19]
and is the honeypot which is most commonly expanded upon
[3]. We therefore chose Cowrie over alternatives.

We deployed Cowrie on a virtual machine in a Microsoft
Azure cloud environment. The virtual machine ran on a a
Debian 10 distribution, which is required for installation of
Cowrie [26]. We installed Cowrie via T-pot [27], a honey-
pot platform which allows for easy installation of multiple
honeypots at once. Even though T-pot hosts many different
honeypots in its arsenal by default, we disabled all other
honeypots than Cowrie after installation to limit server costs.

We collected the IoT attack data over three time periods, for
a total of 54 days: from January 6th 2022 until February 15th
2022 (10 days), from January 19th 2022 until March 22nd
2022 (32 days) and from April 8th 2022 until April 19th 2022
(12 days). Due to the limited time available for this thesis, a

longer data collection period was not possible. We stored the
data from each day in a .JSON format and retrieved the new
data every day from the honeypot virtual environment so that
it could be stored locally. Cowrie, by default, collects attacker
IP-addresses. We assumed that the far majority (if not all) of
these IP-addresses were run through a VPN-client, due to the
attacker wishing to hide their identity when performing the
(illegal) attack. However, in order to ensure none of the IP-
addresses could somehow still be used to identify individual
attackers, we removed collected IP-addresses from the data
immediately.

We combined the rest of the individual .JSON files from
each days’ worth of collected honeypot attacks and cast it into
a .CSV format using Python [28] and the Pandas module for
Python [29]. The unedited dataset contained 111.106 unique
sessions. Since the goal of this study was to cluster sessions
containing command data, we discarded all sessions lacking
command data. A quick inspection of the dataset showed
disconnection after a failed username/password combination as
a common explanation for early disconnection of the attacker.
After discarding empty sessions, 2.118 sessions remained in
the dataset.

We inspected the data once more for outliers. On average,
sessions would take ∼ 26 seconds. We decided to removed
session containing duplicated commands, a session that took
over 1292 seconds, and a session containing unusual in-
put, e.g. Accept-Encoding: gzip and User-Agent:
libwww-perl/6.58. A total of 2.115 sessions remained in
the final dataset after these alterations.

C. Labelling procedure

We first created a ground-truth grouping of the data to
compare any created cluster arrangements to. We chose to
group the attacks sessions based on their goal, since being
able to quickly determine the goal of an attack session can
prove useful in the development of countermeasures [22].

We chose to determine the goal of the attack sessions based
on the purpose of the commands used in the session, since the
purpose of the used commands can determine the goal of the
session. [22], [23]. We considered two suitable approaches
from the existing literature for the labelling procedure: the
approach by [22] and the approach by [23]. We identified
some overlap between these approaches. For example, both
distinguished commands used for fingerprinting (e.g. cat or
uname) and commands with which some malicious activity
was performed (e.g. curl or wget). Therefore, we initially
identified each session as being part of one of the following
two categories:

• Fingerprinting: Sessions in which only fingerprinting
commands are used to gain information about the system,
e.g. gathering information about available services on the
device.

• Malicious Activity: Sessions in which malicious acts are
performed which can harm the system, e.g. downloading
and execution of payloads or blocking existing users from
accessing the device.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:44:27 UTC from IEEE Xplore. Restrictions apply.

5666

We manually analyzed the goal of the commands used in each
attack session and assigned them a corresponding label. We
display the distribution of these labels among the sessions in
Figure 1. Most sessions in the dataset were initially labelled
as ’Malicious Activity’ sessions (n = 1263). In the remaining
sessions only fingerprinting commands were executed, and
these sessions were therefore labelled as ’Fingerprinting’.
(n = 852). We assigned only one label per session, and
considered Malicious Activity sessions more severe due to
their negative consequences for the system. Therefore, in case
both labels were applicable to a session, we chose to label the
session as Malicious Activity.

Fig. 1. Pie chart of labelled attacks in collected honeypot data.

This initial categorisation of the attack sessions was rather
broad, and our aim was to create a more specific description
of each of the sessions to better describe each session. We
therefore developed a new labelling tool by inspected the
sessions belonging to each of the two initial categories and
differentiated them based on their taken approach. For a sake
of space in Table I we provide an overview of the labelled we
defined based on the different Iot attacks.

To assess the usefulness of the labelling tool, we used inter-
rater reliability determined using Cohen’s Kappa [30]. Near
perfect agreement was achieved between two different raters,
i.e. the researcher and a domain expert, who manually labelled
the sessions using this tool (κ = 0.979). We discussed the
labels on which disagreement existed, after which we achieved
a final labelling of the dataset.

The final labelling of the data included 889 SSH Attack, 42
Payload Transfer, 332 Payload Attack, 465 Busybox-FP and
387 Basic-FP sessions. The distribution of the labels was rather
unbalanced. We recognized it is normally good practice to
address such class imbalances before using machine learning
tasks. However, although class prevalence is often known
when performing classification tasks due to the availability
of fully labelled data, such knowledge is most likely unavail-
able in practical situations requiring unsupervised or semi-

supervised clustering tasks, since they are performed when
either no or only a small amount of labelled data is available
respectively. We therefore chose not to address the imbalance
in the classes for the experiment we performed in this thesis.

D. Feature construction

To prepare the IoT attack session data for the clustering
models, we first extracted a feature set from which we then
automatically constructed an efficient feature representation
using an autoencoder model, following the approach proposed
by [14]. We selected this approach since it is able to automat-
ically construct a feature set suitable for clustering similar IoT
attacks without requiring manual feature correlation, which in
turn requires extensive domain knowledge and can be time-
consuming. We use the following sub-sections to first describe
the basics of autoencoder models, and then to elaborate on
followed procedure.

1) Procedure: We first automatically extracted an initial
feature set from the data using Python. We created a list
of command keywords used in the sessions by inspecting
the data, defining command keywords as keywords which
shaped the action performed by a command, e.g. wget (for
retrieving contents from a web server) or cd (for changing
directories). We considered commonly accessed file directories
command keywords as well. These directories (e.g. /tmp,
bin/busybox) held information about which part of the
system an attack targeted, which we suspected could have been
another way to differentiate between the goals attack sessions.
Since all commands followed Unix shell syntax (or similar),
we used the shlex module (available in base Python) to
automatically separate the keywords in each command.

We indicated the presence of a command keyword in a
session with a binary value, i.e. 1 indicating the presence of a
command in a session and 0 if the command was not present.
We then automatically assigned the binaries for each command
keyword to each individual session. Lastly, we used session
duration and total amount of commands as additional features,
similar to [14]. We extracted a total of 72 features. We show
the most and least commonly used command keywords in the
sessions in Figure 2.

Secondly, we used the Keras module [31] to construct
an autoencoder model in Python, which could be used for
dimensionality reduction of the original feature set. We first
used K-fold cross-validation over 8 folds on the original
feature set. Using this method, we allowed the test set of each
of the train/test combinations to be unseen data on which we
could test the autoencoder composition. Moreover, we scaled
each test/train set combination using the MinMaxScaler found
in the scikit-learn module [32]. We first fit the scaler
on each train set and applied it to each train and test set
individually, so that we calculated the maximum and minimum
value for each input feature using only the training set and not
the full dataset to prevent data leakage.

We then determined the quality of each autoencoder com-
position in terms of their reconstruction loss, for which we
used the reconstruction Mean Squared error (rMSE). rMSE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:44:27 UTC from IEEE Xplore. Restrictions apply.

5667

Label Typical commands Main goal Number of sessions Description of label
SSH Attack rm, .ssh, mkdir Malicious activity 889 Sessions in which the .ssh folder is removed and new .ssh folder

is added. An attack such as this will allow an attacker to open an
SSH channel to the system at a later moment. All other users are
locked out.

Payload Transfer scp Malicious Activity 42 Sessions in which malicious files (from a /tmp folder) are seemingly
transferred from a remote system to the honeypot using an scp
command.

Payload Attack wget, curl,
busybox, chmod

Malicious activity 332 Sessions in which some sort of malicious file is retrieved from an
external location (using wget, curl, /bin/Busybox, or via a
Payload Transfer session) (and executed).

Busybox-FP busybox, dd,
while

Fingerprinting 465 Sessions in which the /bin/Busybox directory is directly used to
gather system intelligence.

Basic-FP uname, nproc,
ps, ls

Fingerprinting 387 Sessions in which merely information is gathered about the honeypot
system by the attacker. For example, a single echo command is sent,
most likely to see how the system responds. Another example is using
the cat command to see if the /bin/Busybox directory exists.

TABLE I: Tool for labelling IoT attack sessions according to their goal.

Fig. 2. Most and least used commands in the collected honeypot data.

is the average squared difference between the data in the
input layer, and the reconstructed data in the output layer.
It therefore serves as a good measure for assessing the ability
of the autoencoder model to reconstruct the input data [14],
with a lower rMSE indicating a better reconstruction. We
calculated rMSE for each of the 8 train/test combinations. We
trained each fold of each autoencoder composition for 1000
epochs, with a batch size of 100. We considered the following
autoencoder compositions:

• 1 hidden layers: C(15), C(20)
• 3 hidden layers: C(40, 20, 40), C(32, 16, 32), C(20, 15,

20), C(20, 10, 20), C(20, 5, 20)

• 5 hidden layers: C(32, 16, 8, 16, 32), C(32, 20, 10, 20,
32), C(40, 25, 15, 25, 40)

Learning curves of each of the models showed similar rMSE
of the train and test set over the set amount of epochs, giving
no indication of over-fitting. We display the mean rMSE of
all folds for each autoencoder composition in Figure 3. As
displayed, we found best mean rMSE for C(20), followed by
C(40, 20, 40).

We chose the C(40, 20, 40) composition over the C(20)
composition for final feature construction, since it showed
close rMSE to the C(20) composition, and due to the ability
of deep autoencoders to learn complex, nonlinear mappings
of the data [33]. We then once more trained the C(40, 20, 40)
composition autoencoder using the entire feature set, which
was again scaled using the MinMaxScaler.

Fig. 3. Reconstruction mean squared error for proposed autoencoder compo-
sitions.

E. Selecting semi-supervised methods

We chose two semi-supervised algorithms for clustering
of the IoT attack sessions: SeededKMeans [24], which uses
partially labelled data, and PCKMeans, which uses pairwise
constraints [25]. We chose these methods for three reasons:
first, because they have been shown to outperform unsuper-
vised algorithms in terms of accuracy [24], [25]. We therefore
hoped to improve on the accuracy of the current unsupervised
approaches of IoT attack analysis, consequently building on
the state-of-the-art. Second, because the performance of the

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:44:27 UTC from IEEE Xplore. Restrictions apply.

5668

models could be considered state-of-the-art in the field of
semi-supervised clustering as far as we were aware [15], [16].
Third, because they utilized different types of prior knowledge
to aid in the clustering task, and only one of the two types of
data might be available in practice. We use the following sub-
sections to describe how each of the two models incorporate
prior knowledge.

F. Obtaining sets of prior knowledge

Each of the chosen semi-supervised models required a set of
specific prior knowledge for aid in the clustering process, i.e.
partially labelled data (SeededKMeans) or pairwise constraints
(PCKMeans). For the SeededKMeans algorithm, no advised
approaches for obtaining such information can be derived
from the literature. We therefore obtained this information by
randomly sampling attack sessions from each label from the
labelled set created previosly.

As recommended by [25], we used an active learning
scheme to obtain a set of informative pairwise constraints for
the PCKMeans model. [25] proposed a ’farthest-first” active
learner themselves, which was later improved by [34] in their
MinMax active learner. We therefore used a MinMax active
learner to find pairwise constraints for the PCKMeans model.

G. Clustering procedure

We clustered the collected IoT attack sessions using the
two selected semi-supervised clustering methods: Seeded-
KMeans and PCKMeans, to determine the accuracy of
their predicted cluster labels. We implemented a Seed-
edKMeans model and PCKMeans model in Python us-
ing the active-semi-supervised-learning module
[35]. Moreover, we used an unsupervised KMeans approach,
which we implemented using the scikit-learn Python
module [32], to show contrast between the outcome of
the unsupervised and semi-supervised approaches. We chose
KMeans for the comparison, since it is commonly used as
a clustering algorithm in other work concerning IoT attack
analysis [11], [13], [14].

We selected a metric for accuracy of the predicted cluster
labels to compare cluster arrangements of each model. We
chose Adjusted Mutual Information [36]. Adjusted Mutual
Information (AMI) is an adaption of the commonly used
Mutual Information (MI) metric [37], [38], which measures
the similarity between the predicted cluster labels to target
cluster labels.

We considered different configurations of the clustering
models and calculated the accuracy of each model to find
the most accurate configurations. Since we wished to find 5
classes in the data according to the Table I. Moreover, we set
the maximum amount of iterations for all models to 100.

For the SeededKMeans model, we used subsets of partially
labelled data of sizes 50 (i.e. 10 samples per label), 100 (i.e.
20 samples per label), 150 (i.e. 30 samples per label) and 200
(i.e. 40 samples per label). This amounted to around 2%, 5%,
7%, and 9% of the total amount of data. We set the seed for
the sampling procedure at 0 for reproducibility, which meant

the same subset would be sampled every time the model was
executed.

For the PCKMeans model, we allowed the MinMax active
learner the following amounts of maximum allowed queries:
50, 100, 150, and 200. For the PCKMeans algorithm itself
we used different penalty sizes for violated constraints: 0.5, 1,
1.5, and 2. We used grid search to create cluster arrangements
of each maximum query/penalty size combination. We set the
random seed to 0 for reproducibility, which meant the active
learner would generate the same set of pairwise constraints
every time the model was run. Moreover, this meant the
PCKMeans algorithm would chose the same centroids for
initialization every time it was run.

Lastly, for the KMeans models we used KMeans++ [39] for
initialization, with the random state set to 0 for reproducibility
purposes. This meant the algorithm would output the same
cluster arrangement every time the model was executed. We
used different numbers of initialization, namely 5, 10, 15 and
20.

IV. CLUSTER RESULTS

In this section, we provide the model configurations which
resulted in the most accurate cluster labels when compared to
the class labels using AMI. We display the highest AMI for
each best model configuration in Figure 4 for comparison.

Fig. 4. AMI for best model configurations

We calculated the overall highest AMI for the Seeded-
KMeans model cluster arrangement which used a sample size
of 200 labelled sessions (i.e. 40 from each class, ≈ 9% of the
full dataset) for supervision (AMI≈ 0.926, see Figure 4). We
display the cluster arrangement for this model in Figure 5. By
investigating distribution of the IoT attack over the clusters,
we found all Busybox-FP sessions assigned to cluster 0 of this
cluster arrangement. Cluster 1 contained mostly SSH Attack
sessions, although three Basic-FP sessions were assigned to
this cluster as well. Cluster 2 almost exclusively contained
Payload attack sessions, but we also found two Basic-FP
sessions in this cluster. Cluster 3 consisted of mostly Basic-
FP sessions, as well as twenty-three SSH Attack and twenty-
nine Payload Attack sessions. Cluster 4 contained all Payload
Transfer sessions.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:44:27 UTC from IEEE Xplore. Restrictions apply.

5669

Fig. 5. Cluster arrangement of SeededKMeans clustering

Fig. 6. Cluster arrangement of PCKMeans with MinMax active learning

The highest achieved AMI score for the PCKMeans model
was found by setting the maximum amount of queries at 200
and setting the penalty for violated pairwise constraints at 2
(AMI≈ 0.895, see Figure 4). We show the resulting cluster
arrangement in Figure 6. By deeply analyzing the retrieved
results, we see found that cluster 0 of this cluster arrangement
contained most Payload Attack sessions. Cluster 1 contained
most Basic-FP sessions, as well as all but one Payload Transfer
sessions, twenty SSH attack and twenty-one Payload attack
sessions. Cluster 2 contained most Busybox-FP sessions. We
found the majority of SSH attack sessions in cluster 3, as well
as two Basic-FP sessions. Lastly, cluster 4 contained mostly
Busybox-FP sessions, as well as a single Payload Transfer
session.

We found the highest achieved AMI score for the un-
supervised KMeans model at 5 initializations of the model
(AMI≈ 0.850, see Figure 4). We show the created cluster
arrangement in Figure 7. Cluster 0 of this arrangement mostly
contained Payload attack sessions, as well as all Payload
Transfer sessions and 6 Basic-FP sessions. Cluster 1 contained
mostly Basic-FP sessions, as well as some SSH attack sessions
and Payload Attack sessions. Cluster 2 contained most SSH

Fig. 7. Cluster arrangement of KMeans

Attack sessions, although we found three Basic-FP sessions
in this cluster as well. We found most Busybox-FP sessions
in cluster 3, as well as ten SSH Attack sessions. Lastly, we
found a combination of some Payload Attack sessions, as well
as a single Busybox-FP session and five Basic-FP sessions in
cluster 4.

V. DISCUSSION

In this section, we discuss some interesting findings of the
results. First of all, both semi-supervised models were able to
achieve high accuracy at different configurations. Moreover,
both models were able to achieve higher accuracy than the best
unsupervised KMeans model configuration, even when using
lower amounts of prior knowledge. This implies the semi-
supervised approaches can create accurate cluster arrange-
ments which are able to beat the accuracy of unsupervised
approaches, even if only a small amount of prior knowledge
is available to be leveraged by the models.

Secondly, by inspecting the amount of observations per class
per cluster, we noticed the SeededKMeans algorithm was the
only model able to assign all Payload Transfer sessions to
a separate cluster. We suspect other models were unable to
achieve this, due to the limited amount of available examples
for this class. These results imply the SeededKMeans is able
create accurate cluster arrangements, even when classes are
imbalanced.

Third, by inspecting the AMI of all attempted configurations
of the PCKMeans model, we found the model showed high
accuracy at a lower maximum amount of queries (¡ 200)
when specific penalties for violating pairwise constraints were
set. We found some of the PCKMeans configurations even
beat the SeededKMeans configurations using comparable sizes
of partially labelled data as prior knowledge. For example,
at 50 queries and a penalty size of 2, PCKMeans achieved
AMI≈ 0.882, while SeededKMeans using a sample size of 50
labelled examples for supervision achieved AMI≈ 0.844. Note
that the achieved AMI of the PCKMeans model surpassed
the AMI of the best unsupervised KMeans model as well

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:44:27 UTC from IEEE Xplore. Restrictions apply.

5670

(AMI≈ 0.850). This implies that, even when only a couple
of oracle queries are allowed, the PCKMeans semi-supervised
approach can outperform both the SeededKMeans and the
unsupervised approach if combined with the right penalty for
violated pairwise constraints.

Fourth, we noticed that in the SeededKMeans approach
only five other sessions were wrongfully clustered. Three
Basic-FP sessions were assigned to cluster 1, which contained
mostly SSH Attack sessions. Moreover, 2 Basic-FP sessions
were assigned to cluster 2, which contained mostly Payload
attack sessions. Closer inspection of these sessions revealed
that these sessions were unfinished versions of SSH Attack
and Payload Attack sessions respectively. This both implies
that some attack sessions were prematurely ended, and that
the SeededKMeans algorithm was still able to cluster the
prematurely ended attack sessions with their finished versions.

Fifth, we noticed that SSH Attack sessions were by far
the most prominent in our dataset. We find most of these
attacks use a similar approach. These results imply a current
trend in IoT attacks concerning in which attackers target the
SSH connection of the system. Moreover, it reveals a common
attack pattern used for the attack.

Lastly, by manually inspecting the different attacks and their
labels in the data, we found the /bin/busybox command
was commonly used in both Busybox-FP and Payload Attack
sessions. These results show the popularity of busybox ex-
ploitation for different attacker goals. This implication is even
more confirmed by investigating the Basic-FP sessions found
in the data, many of which checked for the existence of the
/bin/busybox directory on the system, e.g. using the cat
command.

Using the results from our proposed approach, we derive
some design principles for the application of semi-supervised
clustering techniques to future IoT attack data. We summarize
these findings here:

• We advice using semi-supervised clustering for IoT attack
analysis over unsupervised clustering whenever a desired
grouping of the IoT attacks is known, and a small amount
of prior knowledge about the attacks is or can be made
available to be leveraged.

• We suggest using the SeededKMeans algorithm if pos-
sible, i.e. if a reasonable amount of explicitly labelled
examples from each class is or can be made available,
since it can offer the best results and since it performs
well even if classes are imbalanced. Moreover, it can
correctly cluster unfinished versions of attacks.

• We suggest using the PCKMeans model in combination
with a MinMax active learner if a reasonable amount of
explicit examples of each class is difficult to obtain for a
SeededKMeans approach, since PCKMeans can achieve
high accuracy even at lower amounts of prior knowledge
used and the MinMax active learner will find and query
informative examples automatically.

• We find the clustering algorithms can cluster together
uncommon attack approaches, which may be useful for
detecting zero-day attack approaches, i.e. approaches

which have not yet been observed and therefore have not
yet been properly studied.

• We find that many recent IoT attacks target the SSH
connection to take control of the system or exploit
the busybox for different malicious goals, and therefore
consider those aspects of IoT devices to currently be most
vulnerable.

VI. CONCLUSION

IoT devices are frequently targeted by cyber attacks due
to their degree of connectivity in a network and due to their
limited security capabilities. Efficient analysis of the aspects
of these attacks is important as a first step in developing
counter-mechanisms. One important aspect of IoT attacks is
understanding their goal, and being able to quickly classify
attacks with similar goals be beneficial for analyzing them.
We therefore contributed to the existing body of work by
introducing semi-supervised approaches to clustering big data
IoT attacks, improving on the accuracy of state-of-the-art.

Using the semi-supervised models, we achieved more ac-
curate cluster arrangements than an unsupervised KMeans
approach, which is commonly used in related literature. We
found overall best performance for the SeededKMeans model,
which achieved an AMI of 0.926 while using only 200 labelled
samples (i.e. 40 from each class, ≈ 9% of the full dataset) as
prior knowledge.

Using our findings, we show that semi-supervised ap-
proaches can be used to accurately cluster IoT attack sessions
based on their goal. We provided a set of design principles that
followed from our approach, which can be useful for future
work wishing to use a semi-supervised approach to clustering
IoT attack sessions. Moreover, we provide multiple related
research directions future work can built upon.

VII. LIMITATIONS & FUTURE WORK

Although we attempted to keep the amount of limitations to
a minimum, we admit the complexity of the topics addressed
in this study have resulted in some key limitations. We discuss
these limitations first in this section. We then identify some
directions for future work.

One of the key limitations of this study is the limited
diversity of sessions in the data. We noticed many sessions
were very similar in terms of their approach. A high degree
of similar attacks could have caused bias in the creation of
the cluster arrangements, which may explain why some more
uncommon attacks were clustered wrong. Furthermore, the
dataset contained only a small amount of Payload Transfer
sessions (n = 42). We chose not to address this class imbal-
ance, since we assumed that in practical situations where semi-
supervised clustering approaches are applicable, knowledge of
the exact class prevalence will most likely not be available.
Although we found that the SeededKMeans algorithm did not
suffer under this class imbalance, it might explain why the
PCKMeans and unsupervised KMeans model were unable to
assign Payload Transfer sessions to a separate cluster. Another
limitation is represented by scalability of main algoritmhs,

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:44:27 UTC from IEEE Xplore. Restrictions apply.

5671

which could be tackled by considering data approximation
paradigms (e.g., [40], [41]).

As future work we plan to develop a more advanced
honeypot software. This is due to the fact that we suspect
that some attackers were able to identify the honeypot used
in this research, which can explain why the early termination
of some attacks. Moreover, we plan to look into identifying
the scalability of the proposed method. As the amount of data
in a to-be-clustered dataset increases, so might the amount of
prior knowledge needed for effective semi-supervised cluster-
ing. Future work can therefore focus on applying the semi-
supervised clustering approaches proposed in this thesis to
larger datasets to identify the amount of prior knowledge
required in order to outperform unsupervised methods.

REFERENCES

[1] S. Garnier, J. Gautrais, and G. Theraulaz, “The biological principles of
swarm intelligence,” Swarm Intelligence, vol. 1, no. 1, pp. 3–31, June
2007. [Online]. Available: http://dx.doi.org/10.1007/s11721-007-0004-y

[2] A. E. Omolara, A. Alabdulatif, O. I. Abiodun, M. Alawida, A. Alab-
dulatif, H. Arshad et al., “The internet of things security: A survey en-
compassing unexplored areas and new insights,” Computers & Security,
vol. 112, p. 102494, 2022.

[3] J. Franco, A. Aris, B. Canberk, and A. S. Uluagac, “A survey of
honeypots and honeynets for internet of things, industrial internet of
things, and cyber-physical systems,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 4, pp. 2351–2383, 2021.

[4] M. Abomhara and G. M. Køien, “Cyber security and the internet of
things: vulnerabilities, threats, intruders and attacks,” Journal of Cyber
Security and Mobility, pp. 65–88, 2015.

[5] M. F. Razali, M. N. Razali, F. Z. Mansor, G. Muruti, and N. Jamil,
“Iot honeypot: A review from researcher’s perspective,” in 2018 IEEE
Conference on Application, Information and Network Security (AINS).
IEEE, 2018, pp. 93–98.

[6] M. Golling and B. Stelte, “Requirements for a future ews-cyber defence
in the internet of the future,” in 2011 3rd International Conference on
Cyber Conflict. IEEE, 2011, pp. 1–16.

[7] J. Haseeb, M. Mansoori, and I. Welch, “A measurement study of iot-
based attacks using iot kill chain,” in 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Commu-
nications (TrustCom). IEEE, 2020, pp. 557–567.

[8] N. Woolf, “Ddos attack that disrupted internet was largest of its kind
in history, experts say,” Oct 2016. [Online]. Available: https://www.
theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

[9] K. Li, H. Jiang, L. T. Yang, and A. Cuzzocrea, Eds., Big Data -
Algorithms, Analytics, and Applications. Chapman and Hall/CRC,
2015.

[10] A. Cuzzocrea, “Analytics over big data: Exploring the convergence of
datawarehousing, OLAP and data-intensive cloud infrastructures,” in
37th IEEE COMPSAC 2013, Kyoto, Japan, July 22-26, 2013, 2013, pp.
481–483.

[11] D. Fraunholz, D. Krohmer, S. D. Anton, and H. D. Schotten, “Investi-
gation of cyber crime conducted by abusing weak or default passwords
with a medium interaction honeypot,” in 2017 International Conference
on Cyber Security And Protection Of Digital Services (Cyber Security),
2017, pp. 1–7.

[12] G. K. Sadasivam, C. Hota, and B. Anand, “Classification of ssh
attacks using machine learning algorithms,” in 2016 6th International
Conference on IT Convergence and Security (ICITCS). IEEE, 2016,
pp. 1–6.

[13] J. Haseeb, M. Mansoori, H. Al-Sahaf, and I. Welch, “Iot attacks:
Features identification and clustering,” in 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Commu-
nications (TrustCom). IEEE, 2020, pp. 353–360.

[14] J. Haseeb, M. Mansoori, Y. Hirose, H. Al-Sahaf, and I. Welch,
“Autoencoder-based feature construction for iot attacks clustering,”
Future Generation Computer Systems, vol. 127, pp. 487–502, 2022.

[15] E. Bair, “Semi-supervised clustering methods,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 5, no. 5, pp. 349–361, 2013.

[16] J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised
learning,” Machine Learning, vol. 109, no. 2, pp. 373–440, 2020.

[17] A. Cuzzocrea, F. Furfaro, E. Masciari, D. Saccà, and C. Sirangelo, “Ap-
proximate query answering on sensor network data streams,” GeoSensor
Networks, vol. 49, 2004.

[18] A. Cuzzocrea, F. Furfaro, S. Greco, E. Masciari, G. M. Mazzeo, and
D. Saccà, “A distributed system for answering range queries on sensor
network data,” in 3rd IEEE PerCom 2005 Workshops, 8-12 March 2005,
Kauai Island, HI, USA, 2005, pp. 369–373.

[19] J. M. J. Valero, M. G. Pérez, A. H. Celdrán, and G. M. Pérez,
“Identification and classification of cyber threats through ssh honeypot
systems,” in Handbook of Research on Intrusion Detection Systems. IGI
Global, 2020, pp. 105–129.

[20] M. Gupta, S. Kochhar, P. Jain, and P. Nagrath, “Hybrid recommender
system using a-priori algorithm,” in Proceedings of International Confer-
ence on Sustainable Computing in Science, Technology and Management
(SUSCOM), Amity University Rajasthan, Jaipur-India, 2019.

[21] S. Lee, A. Abdullah, N. Jhanjhi, and S. Kok, “Classification of botnet
attacks in iot smart factory using honeypot combined with machine
learning,” PeerJ Computer Science, vol. 7, p. e350, 2021.

[22] A. Z. Tabari, X. Ou, and A. Singhal, “What are attackers after on iot
devices? an approach based on a multi-phased multi-faceted iot honeypot
ecosystem and data clustering,” arXiv preprint arXiv:2112.10974, 2021.

[23] E. Kheirkhah, S. P. Amin, H. J. Sistani, and H. Acharya, “An experi-
mental study of ssh attacks by using honeypot decoys,” Indian Journal
of Science and Technology, vol. 6, no. 12, pp. 5567–5578, 2013.

[24] S. Basu, A. Banerjee, and R. Mooney, “Semi-supervised clustering by
seeding,” in In Proceedings of 19th International Conference on Machine
Learning (ICML-2002. Citeseer, 2002.

[25] S. Basu, A. Banerjee, and R. J. Mooney, “Active semi-supervision
for pairwise constrained clustering,” in Proceedings of the 2004 SIAM
international conference on data mining. SIAM, 2004, pp. 333–344.

[26] M. Oosterhof, “Cowrie ssh and telnet honeypot,” Aug 2019. [Online].
Available: https://www.cowrie.org/

[27] T-Pot, “T-pot - the all in one multi honeypot plattform,” 2016. [Online].
Available: https://github.com/telekom-security/tpotce

[28] G. Van Rossum and F. Drake, “Python 3 reference manual createspace,”
Scotts Valley, CA, 2009.

[29] W. McKinney et al., “Data structures for statistical computing in
python,” in Proceedings of the 9th Python in Science Conference, vol.
445, no. 1. Austin, TX, 2010, pp. 51–56.

[30] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[31] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/
fchollet/keras

[32] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[33] W. Jia, M. Sun, J. Lian, and S. Hou, “Feature dimensionality reduction:
a review,” Complex & Intelligent Systems, pp. 1–31, 2022.

[34] P. K. Mallapragada, R. Jin, and A. K. Jain, “Active query selection for
semi-supervised clustering,” in 2008 19Th international conference on
pattern recognition. IEEE, 2008, pp. 1–4.

[35] DataMole, “Daactive semi-supervised clustering algorithms for scikit-
learn,” Oct 2018. [Online]. Available: https://github.com/datamole-ai/
active-semi-supervised-clustering

[36] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correc-
tion for chance,” The Journal of Machine Learning Research, vol. 11,
pp. 2837–2854, 2010.

[37] C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[38] J. Kreer, “A question of terminology,” IRE Transactions on Information
Theory, vol. 3, no. 3, pp. 208–208, 1957.

[39] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” Stanford, Tech. Rep., 2006.

[40] A. Cuzzocrea, “Overcoming limitations of approximate query answering
in OLAP,” in Ninth IDEAS 2005, 25-27 July 2005, Montreal, Canada,
2005, pp. 200–209.

[41] A. Cuzzocrea, F. Furfaro, and D. Saccà, “Hand-olap: A system for
delivering OLAP services on handheld devices,” in 6th ISADS 2003,
9-11 April 2003, Pisa, Italy, 2003, pp. 80–87.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on May 17,2024 at 18:44:27 UTC from IEEE Xplore. Restrictions apply.

